234 research outputs found

    Comparison of Six Artificial Diets for Western Corn Rootworm Bioassays and Rearing

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is considered the most important maize (Zea mays L.) pest in the U.S. Corn Belt. Bioassays testing susceptibility to Bacillus thuringiensis Berliner (Bt) and other toxins of corn rootworm larvae often rely on artificial diet formulations. Successful bioassays on artificial diet for corn rootworm have sometimes been challenging because of microbial contamination. Toward the long-term goal of developing a universal artificial diet for western corn rootworm larvae, we compared larval survival, dry weight, and percentage of molt in 10-d bioassays from six current diets of which we were aware. In addition, as part of longer term rearing efforts, we recorded molting over an extended period of development (60 d). Six different artificial diets, including four proprietary industry diets (A, B, C, and D), the first published artificial diet for western corn rootworm (Pleau), and a new diet (WCRMO-1) were evaluated. Western corn rootworm larval survival was above 90% and contamination was 0% on all diets for 10 d. Diet D resulted in the greatest dry weight and percentage molting when compared with the other diets. Although fourth-instar western corn rootworm larvae have not been documented previously (only three instars have been previously documented), as many as 10% of the larvae from Diet B molted into a fourth instar prior to pupating. Overall, significant differences were found among artificial diets currently used to screen western corn rootworm. In order for data from differing toxins to be compared, a single, reliable and high-quality western corn rootworm artificial diet should eventually be chosen by industry, academia, and the public as a standard for bioassays

    Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modeling

    Get PDF
    The role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium (URU) deposits in sedimentary basins during tectonically quiet periods is investigated. A number of reactive-flow modeling experiments at the deposit scale were carried out by assigning different dip angles and directions to a fault and various permeabilities to hydrostratigraphic units). The results show that the fault dip angle and direction, and permeability of the hydrostratigraphic units govern the convection pattern, temperature distribution, and uranium mineralization. Avertical fault results in uranium mineralization at the bottom of the fault within the basement, while a dipping fault leads to precipitation of uraninite below the unconformity either away from or along the plane of the fault, depending on the fault permeability. A more permeable fault causes uraninite precipitates along the fault plane,whereas a less permeable one gives rise to the precipitation of uraninite away from it. No economic ore mineralization can form when either very low or very high permeabilities are assigned to the sandstone or basement suggesting that these units seem to have an optimal window of permeability for the formation of uranium deposits. Physicochemical parameters also exert an additional control in both the location and grade of URU deposits. These results indicate that the difference in size and grade of different URU deposits may result from variation in fluid flow pattern and physicochemical conditions, caused by the change in structural features and hydraulic properties of the stratigraphic units involved

    Biomechanical evaluation of immediate stability with rectangular versus cylindrical interbody cages in stabilization of the lumbar spine

    Get PDF
    BACKGROUND: Recent cadaver studies show stability against axial rotation with a cylindrical cage is marginally superior to a rectangular cage. The purpose of this biomechanical study in cadaver spine was to evaluate the stability of a new rectangular titanium cage design, which has teeth similar to the threads of cylindrical cages to engage the endplates. METHODS: Ten motion segments (five L2-3, five L4-5) were tested. From each cadaver spine, one motion segment was fixed with a pair of cylindrical cages (BAK, Sulzer Medica) and the other with paired rectangular cages (Rotafix, Corin Spinal). Each specimen was tested in an unconstrained state, after cage introduction and after additional posterior translaminar screw fixation. The range of motion (ROM) in flexion-extension, lateral bending, and rotation was tested in a materials testing machine, with +/- 5 Nm cyclical load over 10 sec per cycle; data from the third cycle was captured for analysis. RESULTS: ROM in all directions was significantly reduced (p < 0.05) with both types of cages. There was no significant difference in reduction of ROM in flexion-extension (p = 0.6) and rotation (p = 0.92) between the two cage groups, but stability in lateral bending was marginally superior with the rectangular cages (p = 0.11). Additional posterior fixation further reduced the ROM significantly (p < 0.05) in most directions in both cage groups, but did not show any difference between the cage groups. CONCLUSIONS: There was no significant difference in immediate stability in any direction between the threaded cylindrical cage and the new design of the rectangular cage with endplate teeth

    Molecular basis for increased susceptibility of Indigenous North Americans to seropositive rheumatoid arthritis

    Get PDF
    Objective The pathogenetic mechanisms by which HLA-DRB1 alleles are associated with anticitrullinated peptide antibody (ACPA)-positive rheumatoid arthritis (RA) are incompletely understood. RA high-risk HLA-DRB1 alleles are known to share a common motif, the ‘shared susceptibility epitope (SE)’. Here, the electropositive P4 pocket of HLA-DRB1 accommodates self-peptide residues containing citrulline but not arginine. HLA-DRB1 His/Phe13β stratifies with ACPA-positive RA, while His13βSer polymorphisms stratify with ACPA-negative RA and RA protection. Indigenous North American (INA) populations have high risk of early-onset ACPA-positive RA, whereby HLA-DRB1*04:04 and HLA-DRB1*14:02 are implicated as risk factors for RA in INA. However, HLA-DRB1*14:02 has a His13βSer polymorphism. Therefore, we aimed to verify this association and determine its molecular mechanism. Methods HLA genotype was compared in 344 INA patients with RA and 352 controls. Structures of HLA-DRB1*1402-class II loaded with vimentin-64Arg59-71, vimentin-64Cit59-71 and fibrinogen β−74Cit69-81 were solved using X-ray crystallography. Vimentin-64Cit59-71-specific and vimentin59-71-specific CD4+ T cells were characterised by flow cytometry using peptide-histocompatibility leukocyte antigen (pHLA) tetramers. After sorting of antigen-specific T cells, TCRα and β-chains were analysed using multiplex, nested PCR and sequencing. Results ACPA+ RA in INA was independently associated with HLA-DRB1*14:02. Consequent to the His13βSer polymorphism and altered P4 pocket of HLA-DRB1*14:02, both citrulline and arginine were accommodated in opposite orientations. Oligoclonal autoreactive CD4+ effector T cells reactive with both citrulline and arginine forms of vimentin59-71 were observed in patients with HLA-DRB1*14:02+ RA and at-risk ACPA- first-degree relatives. HLA-DRB1*14:02-vimentin59-71-specific and HLA-DRB1*14:02-vimentin-64Cit59-71-specific CD4+ memory T cells were phenotypically distinct populations. Conclusion HLA-DRB1*14:02 broadens the capacity for citrullinated and native self-peptide presentation and T cell expansion, increasing risk of ACPA+ RA

    The impact of DMARD and anti-TNF therapy on functional characterization of short-term T-cell activation in patients with rheumatoid arthritis - A follow-up study

    Get PDF
    Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by a systemic dysfunction of T-cells. In this study we tested the impact of DMARD and anti-TNF agents on short-term activation characteristics of T-cells. We enrolled 12 patients with newly diagnosed RA (naïve RA) who were treated with methothrexate (MTX) and glucocorticsteroid (GCS) and 22 patients with established RA non responding to conventional DMARD therapy who were treated with different anti-TNF agents. Nine healthy volunteers served as controls. Blood samples were taken at baseline, then at 4th and 8th week of therapy. The characteristics of several intracellular activation processes during short-term activation of T-cells including cytoplasmic Ca2+ level, mitochondrial Ca2+ level, reactive oxygen species (ROS) and nitric oxide (NO) generation were determined by a novel flow-cytometry technique. At baseline, the tested processes were comparable to controls in naïve RA. During GCS therapy, cytoplasmic Ca2+ level and ROS generation decreased. After the addition of MTX to GCS cytoplasmic Ca2+ level became comparable to controls, while ROS generation decreased further. In DMARD non responders, cytoplasmic Ca2+ level was higher than controls at baseline. The cytoplasmic Ca2+ level became comparable to controls and ROS generation decreased during each of the three anti-TNF-α agent therapies. Mitochondrial Ca2+ level and NO generation were unaltered in all of the patient groups. These results indicate that intracellular machinery is affected in T-cells of RA patients. This may alter the behavior of T-cells during activation. Different therapeutic approaches may modulate the abnormal T-cell functions. © 2014 Szalay et al

    Sex differences evident in elevated anxiety symptoms in multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis

    Get PDF
    IntroductionImmune-mediated inflammatory diseases (IMID), such as multiple sclerosis (MS), inflammatory bowel disease (IBD) or rheumatoid arthritis (RA) have high rates of elevated anxiety symptoms. This can may worsen functioning and increase IMID disease burden. The rate of and factors associated with elevated anxiety symptoms may differ between males and females, which, in turn can affect diagnosis and disease management. We evaluated whether the frequency and factors associated with comorbid elevated anxiety symptoms in those with an IMID differed by sex.MethodsParticipants with an IMID (MS, IBD or RA) completed two anxiety measures (HADS, GAD-7). We used logistic regression to investigate whether sex differences exist in the presence of comorbid elevated anxiety symptoms or in the endorsement of individual anxiety items in those with an IMID.ResultsOf 656 participants, females with an IMID were more likely to have elevated anxiety symptoms compared to males (adjusted odds ratio [aOR] 2.05; 95%CI: 1.2, 3.6). Younger age, higher depressive symptoms and income were also associated with elevated anxiety symptoms in IMID. Lower income in males with an IMID, but not females, was associated with elevated anxiety symptoms (aOR: 4.8; 95%CI: 1.5, 15.6). No other factors demonstrated a sex difference. Males had nearly twice the odds of endorsing restlessness on the GAD-7 (OR = 1.8, 95%CI: 1.07, 3.15) compared to females.DiscussionWe found evidence for sex differences in the factors associated with experiencing elevated anxiety symptoms in those with an IMID. These findings could be helpful to sensitize clinicians to monitor for comorbid anxiety symptoms in males with an IMID

    Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity

    Get PDF
    It is well established through field observations, experiments, and chemical models that oxidation (redox) state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log [Image: see text] –pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100°C) hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT) and red-bed related base metal (RBRBM) deposits in terms of their approximate pH and [Image: see text] conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log [Image: see text] and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl(-), HS(-), H(2)S, and OH(- )were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log [Image: see text] –pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate) complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319–354) and G. M. Anderson (Econ. Geol., 1975, 70, 937–942) are capable of transporting sufficient amounts of Pb (up to 10 ppm) and Zn (up to 100 ppm) in the form of carboxylate complexes to form economic deposits of these metals. On the other hand, the reduced ore fluid models of D. A. Sverjensky (Econ. Geol., 1984, 79, 23–37) and T. H. Giordano and H. L. Barnes (Econ. Geol., 1981, 76, 2200–2211) can at best transport amounts of Pb and Zn, as carboxylate complexes, that are many orders of magnitude below the 1 to 10 ppm minimum required to form economic deposits. Lead and zinc speciation (mol% of total Pb or Zn) in the model ore fluid was calculated at specific log [Image: see text] –pH conditions along the 100, 0.01, and 0.001 ppm total Pb and total Zn isopleths. Along the 100 ppm isopleth conditions are oxidized (∑SO(4 )>> ∑H(2)S) with Pb and Zn predominantly in the form of chloride complexes under acid to mildly alkaline conditions (pH from 3 to approximately 7.5), while hydroxide complexes dominate Pb and Zn speciation under more alkaline conditions. Sulfide complexes are insignificant under these oxidized conditions. For more reduced conditions along the 0.01 and 0.001 ppm isopleths chloride complexes dominate Pb and Zn speciation in the SO(4)(2- )field and near the SO(4)(2-)-reduced sulfur boundary from pH = 4 to approximately 7.5, while hydroxide complexes dominate Pb and Zn speciation under alkaline conditions above pH = 7.5 in the SO(4)(2- )field. In the most reduced fluids (∑H(2)S >> ∑SO(4)) along the 0.01 and 0.001 isopleths, sulfide complexes account for almost 100% of the Pb and Zn in the model fluid. Acetate (monocarboxylate) complexation is significant only under conditions of chloride and hydroxide complex dominance and its effect is maximized in the pH range 5 to 7, where it complexes 2 to 2.6% of the total Pb and 1 to 1.25% of the total Zn. Malonate (dicarboxylate) complexes are insignificant along all isopleths. The speciation results from this study show that deep formation waters characterized by temperatures near 100°C, high oxidation states and ∑H(2)S < 0.03 mg L(-1 )([Image: see text] < 10(-6)), high chlorinities (~ 100000 mg L(-1)), and high but reasonable concentrations of carboxylate anions can mobilize up to 3% of the total Pb and up to 1.3% of the total Zn as carboxylate complexes. Furthermore, these percentages, under the most favorable conditions, correspond to approximately 1 to 100 ppm of these metals in solution; concentrations that are adequate to form economic deposits of these metals. However, the field evidence suggests that all of these optimum conditions for carboxylate complexation are rarely met at the same time. A comparison of the composite ore fluid compositions from this study and modern brine data shows that the ore brines, corresponding to log [Image: see text] –pH conditions based on the Anderson (1975) and Giordano (1994) model fluids, are similar in many respects to modern, high trace-metal petroleum-field brines. The principal differences between modern high trace-metal brines and the composite ore fluids of Anderson (1975) and Giordano (1994) relate to their carboxylate anion content. The reported concentrations of monocarboxylate anions (∑monocbx) and dicarboxylate anions (Edicbx) in high trace-metal petroleum-field brines (< 1 to 300 mg L(-1 )and < 1 mg L(-1), respectively) are significantly lower than the concentrations assumed in the modelled brines of this study (∑monocbx = 7 700 mg L(-1 )and ∑dicbx = 300 mg L(-1)). There are also major differences in the corresponding total chloride to carboxylate ratio (∑m(Cl)/∑m(cbx)) and monocarboxylate to dicarboxylate ratio (∑m(monocbx)/∑m(dicbx)). Modern high trace-metal brines have much higher ∑m(Cl)/∑m(cbx )values and, therefore, the contribution of carboxylate complexes to the total Pb and Zn content in these modern brines is likely to be significantly less than the 1 to 3 percent for the composite ore fluids of Anderson (1975) and Giordano (1994). The composite ore-brine based on the Giordano and Barnes (1981) MVT ore fluid is comparable to the high salinity (> 170 000 mg L(-1 )TDS) subset of modern brines characterized by low trace-metal content and high total reduced sulfur (∑H(2)S). A comparison of the Sverjensky (1984) composite ore-brine with modern petroleum-field brines in terms of ∑H(2)S and Zn content, reveals that this ore fluid corresponds to a "border-type" brine, between modern high trace-metal brines and those with low trace-metal content and high ∑H(2)S. A brine of this type is characterized by values of ∑H(2)S, ∑Zn, and/or ∑Pb within or near the 1 to 10 mg L(-1 )range. Based on brine-composition data from numerous references cited in this paper, border-type brines do exist but are rare. The model results and field evidence presented in this study are consistent with other chemical simulation studies of carboxylate complexation in modern petroleum-field brines. Thus, it appears that carboxylate complexation plays a minor, if not insignificant, role as a transport mechanism for Pb and Zn in high salinity Na–Cl and Na–Ca–Cl basinal brines and related ore fluids

    IL-17A Expression Is Localised to Both Mononuclear and Polymorphonuclear Synovial Cell Infiltrates

    Get PDF
    This study examines the expression of IL-17A-secreting cells within the inflamed synovium and the relationship to in vivo joint hypoxia measurements.IL-17A expression was quantified in synovial tissue (ST), serum and synovial fluid (SF) by immunohistochemistry and MSD-plex assays. IL-6 SF and serum levels were measured by MSD-plex assays. Dual immunofluorescence for IL-17A was quantified in ST CD15+ cells (neutrophils), Tryptase+ (mast cells) and CD4+ (T cells). Synovial tissue oxygen (tpO(2)) levels were measured under direct visualisation at arthroscopy. Synovial infiltration was assessed using immunohistochemistry for cell specific markers. Peripheral blood mononuclear and polymorphonuclear cells were isolated and exposed to normoxic or 3% hypoxic conditions. IL-17A and IL-6 were quantified as above in culture supernatants.IL-17A expression was localised to mononuclear and polymorphonuclear (PMN) cells in inflamed ST. Dual immunoflourescent staining co-localised IL-17A expression with CD15+ neutrophils Tryptase+ mast cells and CD4+T cells. % IL-17A positivity was highest on CD15+ neutrophils, followed by mast cells and then CD4+T-cells. The number of IL-17A-secreting PMN cells significantly correlated with sublining CD68 expression (r = 0.618, p<0.01). IL-17A SF levels correlated with IL-6 SF levels (r = 0.675, p<0.01). Patients categorized according to tp0(2)< or >20 mmHg, showed those with low tp0(2)<20 mmHg had significantly higher IL-17A+ mononuclear cells with no difference observed for PMNs. Exposure of mononuclear and polymorphonuclear cells to 3% hypoxia, significantly induced IL-6 in mononuclear cells, but had no effect on IL-17A expression in mononuclear and polymorphonuclear cells.This study demonstrates IL-17A expression is localised to several immune cell subtypes within the inflamed synovial tissue, further supporting the concept that IL-17A is a key mediator in inflammatory arthritis. The association of hypoxia with Il-17A expression appears to be indirect, probably through hypoxia-induced pro-inflammatory pathways and leukocyte influx within the joint microenvironment
    corecore