235 research outputs found

    Priming with biocides: a pathway to antibiotic resistance?

    Get PDF
    Aims: To investigate the priming effects of sub-inhibitory concentrations of biocides on antibiotic resistance in bacteria. Methods and results: Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were exposed to sub-inhibitory concentrations of biocides via a gradient plate method. Minimum inhibitory concentration (MIC) and antibiotic susceptibility were determined, and efflux pump inhibitors (thioridazine and chlorpromazine) were used to investigate antibiotic resistance mechanism(s). Escherichia coli displayed a 2-fold increase in MIC (32 to 64 mg l-1) to H2O2 which was stable after 15 passages, but lost after 6 weeks, and P. aeruginosa displayed a 2-fold increase in MIC (64 to 128 mg l-1) to BZK which was also stable for 15 passages. There were no other tolerances observed to biocides in E. coli, P. aeruginosa or S. aureus, however stable cross-resistance to antibiotics was observed in the absence of a stable increased tolerance to biocides. Six-fold increases in MIC to cephalothin and four-fold to ceftriaxone and ampicillin were observed in hydrogen peroxide primed E. coli. Chlorhexidine primed S. aureus showed a four-fold increase in MIC to oxacillin, and glutaraldehyde-primed P. aeruginosa showed four-fold (sulphatriad) and eight-fold (ciprofloxacin) increases in MIC. Thioridazine increased the susceptibility of E. coli to cephalothin and cefoxitin by four and two-fold respectively, and both thioridazine and chlorpromazine increased the susceptibility S. aureus to oxacillin by eight and four-fold respectively. Conclusions: These findings demonstrate that sub-inhibitory concentrations of biocides can prime bacteria to become resistant to antibiotics even in the absence of stable biocide tolerance and suggests activation of efflux mechanisms may be a contributory factor. Significance and impact of the study: This study demonstrates the effects of low-level exposure of biocides (priming) on antibiotic resistance even in the absence of obvious increased biocidal tolerance

    The Use of External Change Agents to Promote Quality Improvement and Organizational Change in Healthcare Organizations: A Systematic Review

    Get PDF
    Background: External change agents can play an essential role in healthcare organizational change efforts. This systematic review examines the role that external change agents have played within the context of multifaceted interventions designed to promote organizational change in healthcare-specifically, in primary care settings. Methods: We searched PubMed, CINAHL, Cochrane, Web of Science, and Academic Search Premier Databases in July 2016 for randomized trials published (in English) between January 1, 2005 and June 30, 2016 in which external agents were part of multifaceted organizational change strategies. The review was conducted according to PRISMA guidelines. A total of 477 abstracts were identified and screened by 2 authors. Full text articles of 113 studies were reviewed. Twenty-one of these studies were selected for inclusion. Results: Academic detailing (AD) is the most prevalently used organizational change strategy employed as part of multi-component implementation strategies. Out of 21 studies, nearly all studies integrate some form of audit and feedback into their interventions. Eleven studies that included practice facilitation into their intervention reported significant effects in one or more primary outcomes. Conclusions: Our results demonstrate that practice facilitation with regular, tailored follow up is a powerful component of a successful organizational change strategy. Academic detailing alone or combined with audit and feedback alone is ineffective without intensive follow up. Provision of educational materials and use of audit and feedback are often integral components of multifaceted implementation strategies. However, we didn\u27t find examples where those relatively limited strategies were effective as standalone interventions. System-level support through technology (such as automated reminders or alerts) is potentially helpful, but must be carefully tailored to clinic needs

    Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    Get PDF
    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time

    It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni.

    Get PDF
    The food-borne zoonotic pathogen Campylobacter jejuni has complex electron transport chains required for growth in the host, many of which contain cofactored periplasmic enzymes localized by the twin-arginine translocase (TAT). We report here the identification of two paralogues of the TatA translocase component in C. jejuni strain NCTC 11168, encoded by cj1176c (tatA1) and cj0786 (tatA2). Deletion mutants constructed in either or both of the tatA1 and tatA2 genes displayed distinct growth and enzyme activity phenotypes. For sulphite oxidase (SorAB), the multi-copper oxidase (CueO) and alkaline phosphatase (PhoX), complete dependency on TatA1 for correct periplasmic activity was observed. However, the activities of nitrate reductase (NapA), formate dehydrogenase (FdhA) and trimethylamine N-oxide reductase (TorA) were significantly reduced in the tatA2 mutant. In contrast, the specific rate of fumarate reduction catalysed by the flavoprotein subunit of the methyl menaquinone fumarate reductase (MfrA) was similar in periplasmic fractions of both the tatA1 and the tatA2 mutants and only the deletion of both genes abolished activity. Nevertheless, unprocessed MfrA accumulated in the periplasm of the tatA1 (but not tatA2) mutant, indicating aberrant signal peptide cleavage. Surprisingly, TatA2 lacks two conserved residues (Gln8 and Phe39) known to be essential in Escherichia coli TatA and we suggest it is unable to function correctly in the absence of TatA1. Finally, only two TAT chaperones (FdhM and NapD) are encoded in strain NCTC 11168, which mutant studies confirmed are highly specific for formate dehydrogenase and nitrate reductase assembly, respectively. Thus, other TAT substrates must use general chaperones in their biogenesis

    Quantifying integrated proteomic responses to iron stress in the globally important marine diazotroph trichodesmium

    Get PDF
    Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual ‘new’ nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55–60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean

    Human responses to Florida red tides : policy awareness and adherence to local fertilizer ordinances

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Science of The Total Environment 493 (2014): 898-909, doi:10.1016/j.scitotenv.2014.06.083.To mitigate the damages of natural hazards, policy responses can be beneficial only if they are effective. Using a self-administered survey approach, this paper focuses on the adherence to local fertilizer ordinances (i.e., county or municipal rules regulating the application of fertilizer to private lawns or facilities such as golf courses) implemented in jurisdictions along the southwest Florida coast in response to hazardous blooms of Florida red tides (Karenia brevis). These ordinances play a role in the context of evolving programs of water pollution control at federal, state, water basin, and local levels. With respect to policy effectiveness, while the strength of physical linkages is of critical importance, the extent to which humans affected are aware of and adhere to the relevant rules, is equally critical. We sought to understand the public’s depth of understanding about the rationales for local fertilizer ordinances. Respondents in Sarasota, Florida, were asked about their fertilizer practices in an area that has experienced several major blooms of Florida red tides over the past two decades. A highly educated, older population of 305 residents and “snowbirds” reported relatively little knowledge about a local fertilizer ordinance, its purpose, or whether it would change the frequency, size, or duration of red tides. This finding held true even among subpopulations that were expected to have more interest in or to be more knowledgeable about harmful algal blooms. In the face of uncertain science and environmental outcomes, and with individual motivations at odds with evolving public policies, the effectiveness of local community efforts to decrease the impacts of red tides may be compromised. Targeted social-science research on human perceptions about the risks of Florida red tides and education about the rationales for potential policy responses is warranted.This work was funded under sponsorship of the National Science Foundation (NSF), awards #1009106 and #1004181and the National Institute for Environmental Health Sciences (NIEHS), award # R21ES017413-01A2. Fleming received support from the European Regional Development Fund and European Social Fund (European Centre for Environment and Human Health, University of Exeter Medical School)

    The terminal enzymes of (bacterio)chlorophyll biosynthesis.

    Get PDF
    (Bacterio)chlorophylls are modified tetrapyrroles that are used by phototrophic organisms to harvest solar energy, powering the metabolic processes that sustain most of the life on Earth. Biosynthesis of these pigments involves enzymatic modification of the side chains and oxidation state of a porphyrin precursor, modifications that differ by species and alter the absorption properties of the pigments. (Bacterio)chlorophylls are coordinated by proteins that form macromolecular assemblies to absorb light and transfer excitation energy to a special pair of redox-active (bacterio)chlorophyll molecules in the photosynthetic reaction centre. Assembly of these pigment-protein complexes is aided by an isoprenoid moiety esterified to the (bacterio)chlorin macrocycle, which anchors and stabilizes the pigments within their protein scaffolds. The reduction of the isoprenoid 'tail' and its addition to the macrocycle are the final stages in (bacterio)chlorophyll biosynthesis and are catalysed by two enzymes, geranylgeranyl reductase and (bacterio)chlorophyll synthase. These enzymes work in conjunction with photosynthetic complex assembly factors and the membrane biogenesis machinery to synchronize delivery of the pigments to the proteins that coordinate them. In this review, we summarize current understanding of the catalytic mechanism, substrate recognition and regulation of these crucial enzymes and their involvement in thylakoid biogenesis and photosystem repair in oxygenic phototrophs

    Evidence for polyploidy in the globally important diazotroph Trichodesmium

    Get PDF
    Polyploidy is a well-described trait in some prokaryotic organisms; however, it is unusual in marine microbes from oligotrophic environments, which typically display a tendency towards genome streamlining. The biogeochemically significant diazotrophic cyanobacterium Trichodesmium is a potential exception. With a relatively large genome and a comparatively high proportion of non-protein-coding DNA, Trichodesmium appears to allocate relatively more resources to genetic material than closely related organisms and microbes within the same environment. Through simultaneous analysis of gene abundance and direct cell counts, we show for the first time that Trichodesmium spp. can also be highly polyploid, containing as many as 100 genome copies per cell in field-collected samples and >600 copies per cell in laboratory cultures. These findings have implications for the widespread use of the abundance of the nifH gene (encoding a subunit of the N2-fixing enzyme nitrogenase) as an approach for quantifying the abundance and distribution of marine diazotrophs. Moreover, polyploidy may combine with the unusual genomic characteristics of this genus both in reflecting evolutionary dynamics and influencing phenotypic plasticity and ecological resilience
    corecore