268 research outputs found

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    The asymmetry and temporal dynamics of incidental letter-location bindings in working memory.

    Get PDF
    Verbal-spatial bindings are integral to routine cognitive operations (e.g., reading), yet the processes supporting them in working memory are little understood. Campo and colleagues [Campo, P., Poch, C., Parmentier, F. B. R., Moratti, S., Elsley, J. V., Castellanos, N., … Maestú, F. (2010). Oscillatory activity in prefrontal and posterior regions during implicit letter-location binding. Neuroimage, 49, 2807-2815] recently reported data suggesting obligatory letter-location binding when participants were directed to remember the letters in a display (of letters in locations), but no evidence for binding when instructed to remember the filled locations. The present study contrasted two explanations for this binding asymmetry. First, it may result from an obligatory dependence on "where" during the representation of "what" information, while "where" information may be held independently of its contents (the strong asymmetry hypothesis). Second, it may constitute a snapshot of a dynamic feature inhibition process that had partially completed by test: the asymmetrical inhibition hypothesis. Using Campo and colleagues' task with a variable retention interval between display and test, we presented four consonants in distinct locations and contrasted performance between "remember letters" and "remember locations" instructions. Our data supported the strong asymmetry hypothesis through demonstrating binding in the verbal task, but not in the spatial task. Critically, when present, verbal-spatial bindings were remarkably stable, enduring for at least 15 seconds

    Primitive computations in speech processing

    Get PDF
    Previous research suggests that artificial-language learners exposed to quasi-continuous speech can learn that the first and the last syllables of words have to belong to distinct classes (e.g., Endress & Bonatti, 2007; Peña, Bonatti, Nespor, & Mehler, 2002). The mechanisms of these generalizations, however, are debated. Here we show that participants learn such generalizations only when the crucial syllables are in edge positions (i.e., the first and the last), but not when they are in medial positions (i.e., the second and the fourth in pentasyllabic items). In contrast to the generalizations, participants readily perform statistical analyses also in word middles. In analogy to sequential memory, we suggest that participants extract the generalizations using a simple but specific mechanism that encodes the positions of syllables that occur in edges. Simultaneously, they use another mechanism to track the syllable distribution in the speech streams. In contrast to previous accounts, this model explains why the generalizations are faster than the statistical computations, require additional cues, and break down under different conditions, and why they can be performed at all. We also show that that similar edge-based mechanisms may explain many results in artificial-grammar learning and also various linguistic observations

    Verbal thinking and inner speech use in autism spectrum disorder

    Get PDF
    The extent to which cognition is verbally mediated in neurotypical individuals is the subject of debate in cognitive neuropsychology, as well as philosophy and psychology. Studying “verbal thinking” in developmental/neuropsychological disorders provides a valuable opportunity to inform theory building, as well as clinical practice. In this paper, we provide a comprehensive, critical review of such studies among individuals with autism spectrum disorder (ASD). ASD involves severe social-communication deficits and limitations in cognitive/behavioural flexibility. The prevailing view in the field is that neither cognition nor behaviour is mediated verbally in ASD, and that this contributes to diagnostic features. However, our review suggests that, on the contrary, most studies to date actually find that among people with ASD cognitive task performance is either a) mediated verbally in a typical fashion, or b) not mediated verbally, but at no obvious cost to overall task performance. Overall though, these studies have methodological limitations and thus clear-cut conclusions are not possible at this stage. The aim of the review is to take stock of existing empirical findings, as well as to help develop the directions for future research that will resolve the many outstanding issues in this field

    Assessment of atrial regional and global electromechanical function by tissue velocity echocardiography: a feasibility study on healthy individuals

    Get PDF
    BACKGROUND: The appropriate evaluation of atrial electrical function is only possible by means of invasive electrophysiology techniques, which are expensive and therefore not suitable for widespread use. Mechanical atrial function is mainly determined from atrial volumes and volume-derived indices that are load-dependent, time-consuming and difficult to reproduce because they are observer-dependent. AIMS: To assess the feasibility of tissue velocity echocardiography (TVE) to evaluate atrial electromechanical function in young, healthy volunteers. SUBJECTS AND METHODS: We studied 37 healthy individuals: 28 men and nine women with a mean age of 29 years (range 20–47). Standard two-dimensional (2-D) and Doppler echocardiograms with superimposed TVE images were performed. Standard echocardiographic images were digitized during three consecutive cardiac cycles in cine-loop format for off-line analysis. Several indices of regional atrial electrical and mechanical function were derived from both 2-D and TVE modalities. RESULTS: Some TVE-derived variables indirectly reflected the atrial electrical activation that follows the known activation process as revealed by invasive electrophysiology. Regionally, the atrium shows an upward movement of its walls at the region near the atrio-ventricular ring with a reduction of this movement towards the upper levels of the atrial walls. The atrial mechanical function as assessed by several TVE-derived indices was quite similar in all left atrium (LA) walls. However, all such indices were higher in the right (RA) than the LA. There were no correlations between the 2-D- and TVE-derived variables expressing atrial mechanical function. Values of measurement error and repeatability were good for atrial mechanical function, but only acceptable for atrial electrical function. CONCLUSION: TVE may provide a simple, easy to obtain, reproducible, repeatable and potentially clinically useful tool for quantifying atrial electromechanical function
    corecore