1,052 research outputs found

    Conductivity and the current-current correlation measure

    Full text link
    We review various formulations of conductivity for one-particle Hamiltonians and relate them to the current-current correlation measure. We prove that the current-current correlation measure for random Schr\"odinger operators has a density at coincident energies provided the energy lies in a localization regime. The density vanishes at such energies and an upper bound on the rate of vanishing is computed. We also relate the current-current correlation measure to the localization length

    Solving the Coulomb scattering problem using the complex scaling method

    Full text link
    Based on the work of Nuttall and Cohen [Phys. Rev. {\bf 188} (1969) 1542] and Resigno et al{} [Phys. Rev. A {\bf 55} (1997) 4253] we present a rigorous formalism for solving the scattering problem for long-range interactions without using exact asymptotic boundary conditions. The long-range interaction may contain both Coulomb and short-range potentials. The exterior complex scaling method, applied to a specially constructed inhomogeneous Schr\"odinger equation, transforms the scattering problem into a boundary problem with zero boundary conditions. The local and integral representations for the scattering amplitudes have been derived. The formalism is illustrated with numerical examples.Comment: 3 pages, 3 figure

    Shapes of leading tunnelling trajectories for single-electron molecular ionization

    Full text link
    Based on the geometrical approach to tunnelling by P.D. Hislop and I.M. Sigal [Memoir. AMS 78, No. 399 (1989)], we introduce the concept of a leading tunnelling trajectory. It is then proven that leading tunnelling trajectories for single-active-electron models of molecular tunnelling ionization (i.e., theories where a molecular potential is modelled by a single-electron multi-centre potential) are linear in the case of short range interactions and "almost" linear in the case of long range interactions. The results are presented on both the formal and physically intuitive levels. Physical implications of the obtained results are discussed.Comment: 14 pages, 5 figure

    Spectral Analysis for Matrix Hamiltonian Operators

    Full text link
    In this work, we study the spectral properties of matrix Hamiltonians generated by linearizing the nonlinear Schr\"odinger equation about soliton solutions. By a numerically assisted proof, we show that there are no embedded eigenvalues for the three dimensional cubic equation. Though we focus on a proof of the 3d cubic problem, this work presents a new algorithm for verifying certain spectral properties needed to study soliton stability. Source code for verification of our comptuations, and for further experimentation, are available at http://www.math.toronto.edu/simpson/files/spec_prop_code.tgz.Comment: 57 pages, 22 figures, typos fixe

    Singular Modes of the Electromagnetic Field

    Get PDF
    We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.Comment: 14 pages, no figure

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Surficial Geologic Map of the Upton 7.5-Minute Quadrangle, Kentucky

    Get PDF
    The Upton 7.5-minute quadrangle is located south of Elizabethtown along the boundaries between Hardin, Hart, and Larue Counties and within the Mississippian Plateau physiographic region (McDowell, 1986). Topography is characterized by the low relief Pennyroyal plain that sits at altitudes below about 750 ft above sea level, the ridges, spurs, and isolated knobs of the intensely dissected Dripping Springs escarpment; the low relief cap of the escarpment landforms is part of the Mammoth Cave plateau region. Moore (1972) mapped the bedrock geology of the quadrangle, which was later digitized by Toth (2006). Mississippian bedrock is exposed throughout most of the quadrangle and is cut by several northwest-southeast trending vertical faults. The Ste. Genevieve Limestone is the oldest lithology and underlies most of the Pennyroyal region. The Beaver Bend Limestone and Paoli Limestone, Sample Sandstone, and Reelsville Limestone stratigraphic sequence underlie the remaining areas of the Pennyroyal, as well as the lower slopes of the Dripping Spring escarpment. The Beech Creek Limestone, Big Clifty Sandstone, and Haney Limestone Members of the Golconda Formation are exposed along the upper slopes of the Dripping Springs escarpment the upper plains of the Mammoth Cave plateau. The Upper Mississippian Hardinsburg Limestone is exposed on the highest ridges of the Dripping Springs, and the Pennsylvanian Caseyville Formation is locally exposed around the highest peak in the southern part of the Upton quadrangle. Previously mapped surficial deposits include minor areas of alluvium in major tributaries, and “slumped” areas across the quadrangle (Moore, 1972)

    The weak localization for the alloy-type Anderson model on a cubic lattice

    Full text link
    We consider alloy type random Schr\"odinger operators on a cubic lattice whose randomness is generated by the sign-indefinite single-site potential. We derive Anderson localization for this class of models in the Lifshitz tails regime, i.e. when the coupling parameter λ\lambda is small, for the energies E≀−Cλ2E \le -C \lambda^2.Comment: 45 pages, 2 figures. To appear in J. Stat. Phy
    • 

    corecore