94 research outputs found
Using solution state NMR spectroscopy to probe NMR invisible gelators
Supramolecular hydrogels are formed via the self-assembly of gelator molecules upon application of a suitable trigger. The exact nature of this self-assembly process has been widely investigated as a practical understanding is vital for the informed design of these materials. Solution-state NMR spectroscopy is an excellent non-invasive tool to follow the self-assembly of supramolecular hydrogels. However, in most cases the self-assembled aggregates are silent by conventional 1H NMR spectroscopy due to the low mobility of the constituent molecules, limiting NMR spectroscopy to following only the initial assembly step(s). Here, we present a new solution-state NMR spectroscopic method which allows the entire self-assembly process of a dipeptide gelator to be followed. This gelator forms transparent hydrogels by a multi-stage assembly process when the pH of an initially alkaline solution is lowered via the hydrolysis of glucono-ÎŽ-lactone (GdL). Changes in the charge, hydrophobicity and relative arrangement of the supramolecular aggregates can be followed throughout the assembly process by measuring the residual quadrupolar couplings (RQCs) of various molecular probes (here, 14NH4+ and isopropanol-d8), along with the NMR relaxation rates of 23Na+. The initially-formed aggregates comprise negatively charged fibrils which gradually lose their charge and become increasingly hydrophobic as the pH falls, eventually resulting in a macroscopic contraction of the hydrogel. We also demonstrate that the in situ measurement of pH by NMR spectroscopy is both convenient and accurate, representing a useful tool for the characterisation of self-assembly processes by NMR
Conditional Inactivation of Brca1, p53 and Rb in Mouse Ovaries Results in the Development of Leiomyosarcomas
Epithelial ovarian cancer (EOC) is thought to arise in part from the ovarian surface epithelium (OSE); however, the molecular events underlying this transformation are poorly understood. Germline mutations in the BRCA1 tumor suppressor gene result in a significantly increased risk of developing EOC and a large proportion of sporadic EOCs display some sort of BRCA1 dysfunction. To generate a model in which Brca1-mediated transformation can be studied, we previously inactivated Brca1 alone in murine OSE, which resulted in an increased accumulation of premalignant changes, but no tumor formation. In this study, we examined tumor formation in mice with conditionally expressed alleles of Brca1, p53 and Rb, alone or in combination. Intrabursal injection of adenovirus expressing Cre recombinase to inactivate p53 resulted in tumors in 100% of mice. Tumor progression was accelerated in mice with concomitant inactivation of Brca1 and p53, but not Rb and p53. Immunohistologic analyses classified the tumors as leiomyosarcomas that may be arising from the ovarian bursa. Brca1 inactivation in primary cultures of murine OSE cells led to a suppression of proliferation that could be rescued by concomitant inactivation of p53 and/or Rb. Brca1-deficient OSE cells displayed an increased sensitivity to the DNA damaging agent cisplatin, and this effect could be modulated by inactivation of p53 and/or Rb. These results indicate that Brca1 deficiency can accelerate tumor development and alter the sensitivity of OSE cells to chemotherapeutic agents. Intrabursal delivery of adenovirus intended to alter gene expression in the ovarian surface epithelium may, in some strains of mice, result in more rapid transformation of adjacent cells, resulting in leiomyosarcomas
Recommended from our members
Datopotamabâderuxtecan plus durvalumab in early-stage breast cancer: the sequential multiple assignment randomized I-SPY2.2 phase 2 trial
Sequential adaptive trial designs can help accomplish the goals of personalized medicine, optimizing outcomes and avoiding unnecessary toxicity. Here we describe the results of incorporating a promising antibody-drug conjugate, datopotamab-deruxtecan (Dato-DXd) in combination with programmed cell death-ligand 1 inhibitor, durvalumab, as the first sequence of therapy in the I-SPY2.2 phase 2 neoadjuvant sequential multiple assignment randomization trial for high-risk stage 2/3 breast cancer. The trial includes three blocks of treatment, with initial randomization to different experimental agent(s) (block A), followed by a taxane-based regimen tailored to tumor subtype (block B), followed by doxorubicin-cyclophosphamide (block C). Subtype-specific algorithms based on magnetic resonance imaging volume change and core biopsy guide treatment redirection after each block, including the option of early surgical resection in patients predicted to have a high likelihood of pathologic complete response, which is the primary endpoint assessed when resection occurs. There are two primary efficacy analyses: after block A and across all blocks for six prespecified HER2-negative subtypes (defined by hormone receptor status and/or response-predictive subtypes). In total, 106 patients were treated with Dato-DXd/durvalumab in block A. In the immune-positive subtype, Dato-DXd/durvalumab exceeded the prespecified threshold for success (graduated) after block A; and across all blocks, pathologic complete response rates were equivalent to the rate expected for the standard of care (79%), but 54% achieved that result after Dato-DXd/durvalumab alone (block A) and 92% without doxorubicin-cyclophosphamide (after blocks Aâ+âB). The treatment strategy across all blocks graduated in the hormone-negative/immune-negative subtype. No new toxicities were observed. Stomatitis was the most common side effect in block A. No patients receiving block A treatment alone had adrenal insufficiency. Dato-DXd/durvalumab is a promising therapy combination that can eliminate standard chemotherapy in many patients, particularly the immune-positive subtype.ClinicalTrials.gov registration: NCT01042379
Leukocyte Attraction by CCL20 and Its Receptor CCR6 in Humans and Mice with Pneumococcal Meningitis
We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6 deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma
Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis
Associations between depressive symptoms and disease progression in older patients with chronic kidney disease: results of the EQUAL study
Background Depressive symptoms are associated with adverse clinical outcomes in patients with end-stage kidney disease; however, few small studies have examined this association in patients with earlier phases of chronic kidney disease (CKD). We studied associations between baseline depressive symptoms and clinical outcomes in older patients with advanced CKD and examined whether these associations differed depending on sex. Methods CKD patients (>= 65 years; estimated glomerular filtration rate <= 20 mL/min/1.73 m(2)) were included from a European multicentre prospective cohort between 2012 and 2019. Depressive symptoms were measured by the five-item Mental Health Inventory (cut-off <= 70; 0-100 scale). Cox proportional hazard analysis was used to study associations between depressive symptoms and time to dialysis initiation, all-cause mortality and these outcomes combined. A joint model was used to study the association between depressive symptoms and kidney function over time. Analyses were adjusted for potential baseline confounders. Results Overall kidney function decline in 1326 patients was -0.12 mL/min/1.73 m(2)/month. A total of 515 patients showed depressive symptoms. No significant association was found between depressive symptoms and kidney function over time (P = 0.08). Unlike women, men with depressive symptoms had an increased mortality rate compared with those without symptoms [adjusted hazard ratio 1.41 (95% confidence interval 1.03-1.93)]. Depressive symptoms were not significantly associated with a higher hazard of dialysis initiation, or with the combined outcome (i.e. dialysis initiation and all-cause mortality). Conclusions There was no significant association between depressive symptoms at baseline and decline in kidney function over time in older patients with advanced CKD. Depressive symptoms at baseline were associated with a higher mortality rate in men
- âŠ