233 research outputs found

    Data compilation of respiration, feeding, and growth rates of marine pelagic organisms

    Get PDF
    The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality

    Seasonal dynamics and mortality rates of Calanus helgolandicus over two years at a station in the English Channel

    Get PDF
    The stage-specific abundance and egg production rates of Calanus helgolandicus were determined on a near-weekly basis over 2 yr at a 50 m deep station in the SW English Channel (Stn L4). Mortality rates were derived using a vertical life-table approach across eggs, nauplii and also the CV–adult stage pair. The results demonstrate strong seasonal patterns in the mortality rates of egg and nauplii and the CV–adult stage pair, but with different relative rates and somewhat different seasonalities. Mortality was highest in the egg and egg–NI stages, averaging 6.1 and ~1.5 d–1, respectively, with the percentage surviving through the egg–NI stage pair often <<10%. Although the instantaneous removal rate of eggs was significantly related to adult abundance (p < 0.001, r2 = 0.221), densities of adult C. helgolandicus seemed too low to account for these rates. Examination of the relationship between CV–adult female mortality and the abundance of the dominant invertebrate predators revealed statistically significant relationships (p < 0.001 r2 = 0.276 for chaetognaths; p < 0.001 r2 = 0.125 for siphonophores); however, the variability explained by temperature was much higher (p < 0.001 r2 = 0.652). The egg–NI and NI–NII stage pairs also showed a highly statistically significant positive relationship between mortality and temperature. For the first time we compared mortality rates for egg–NI using 2 vertical methods—one using measurements of egg and NI abundance (Method A) the other using egg production rates and NI abundance (Method B)—and found the two to be similar, although Method B gave higher values. Finally, as many mortality equations do not consider the bias resulting from the presence of eggs incapable of hatching in the field, we derived and applied new equations for mortality of eggs and egg–NI (Method A) that incorporated egg hatching success. At low hatching success or low mortality rates, this correction can alter estimates of mortality rates significantly

    Disentangling the counteracting effects of water content and carbon mass on zooplankton growth

    Get PDF
    Abstract Zooplankton vary widely in carbon percentage (carbon mass as a percentage of wet mass), but are often described as either gelatinous or non-gelatinous. Here we update datasets of carbon percentage and growth rate to investigate whether carbon percentage is a continuous trait, and whether its inclusion improves zooplankton growth models. We found that carbon percentage is continuous, but that species are not distributed homogenously along this axis. To assess variability of this trait in situ, we investigated the distribution of biomass across the range of carbon percentage for a zooplankton time series at station L4 off Plymouth, UK. This showed separate biomass peaks for gelatinous and crustacean taxa, however, carbon percentage varied 8-fold within the gelatinous group. Species with high carbon mass had lower carbon percentage, allowing separation of the counteracting effects of these two variables on growth rate. Specific growth rates, g (d−1) were negatively related to carbon percentage and carbon mass, even in the gelatinous taxa alone, suggesting that the trend is not driven by a categorical difference between these groups. The addition of carbon percentage doubled the explanatory power of growth models based on mass alone, demonstrating the benefits of considering carbon percentage as a continuous trait

    Selection for increased male size predicts variation in sexual size dimorphism among fish species

    Get PDF
    Variation in the degree of sexual size dimorphism (SSD) among taxa is generally considered to arise from differences in the relative intensity of male-male competition and fecundity selection. One might predict, therefore, that SSD will vary systematically with (1) the intensity of sexual selection for increased male size, and (2) the intensity of fecundity selection for increased female size. To test these two fundamental hypotheses, we conducted a phylogenetic comparative analysis of SSD in fish. Specifically, using records of body length at first sexual maturity from FishBase, we quantified variation in the magnitude and direction of SSD in more than 600 diverse freshwater and marine fish species, from sticklebacks to sharks. Although female-biased SSD was common, and thought to be driven primarily by fecundity selection, variation in SSD was not dependent on either the allometric scaling of reproductive energy output or fecundity in female fish. Instead, systematic patterns based on habitat and life-history characteristics associated with varying degrees of male-male competition and paternal care strongly suggest that adaptive variation in SSD is driven by the intensity of sexual selection for increased male size

    Self-assembly using dendritic building blocks - towards controllable nanomaterials

    Get PDF
    Dendritic molecules have well defined, three-dimensional branched architectures, and constitute a unique nanoscale toolkit. This review focuses on examples in which individual dendritic molecules are assembled into more complex arrays via non-covalent interactions. In particular, it illustrates how the structural information programmed into the dendritic architecture controls the assembly process, and as a consequence, the properties of the supramolecular structures which are generated. Furthermore, the review emphasises how the use of non-covalent (supramolecular) interactions, provides the assembly process with reversibility, and hence a high degree of control. The review also illustrates how self-assembly offers an ideal approach for amplifying the branching of small, synthetically accessible, relatively inexpensive dendritic systems (e.g. dendrons), into highly branched complex nanoscale assemblies. The review begins by considering the assembly of dendritic molecules to generate discrete, well-defined supramolecular assemblies. The variety of possible assembled structures is illustrated, and the ability of an assembled structure to encapsulate a templating unit is described. The ability of both organic and inorganic building blocks to direct the assembly process is discussed. The review then describes larger discrete assemblies of dendritic molecules, which do not exist as a single well-defined species, but instead exist as statistical distributions. For example, assembly around nanoparticles, the assembly of amphiphilic dendrons and the assembly of dendritic systems in the presence of DNA will all be discussed. Finally, the review examines dendritic molecules, which assemble or order themselves into extended arrays. Such systems extend beyond the nanoscale into the microscale or even the macroscale domain, exhibiting a wide range of different architectures. The ability of these assemblies to act as gel-phase or liquid crystalline materials will be considered. Taken as a whole, this review emphasises the control and tunability that underpins the assembly of nanomaterials using dendritic building blocks, and furthermore highlights the potential future applications of these assemblies at the interfaces between chemistry, biology and materials science

    Responses of intraspecific metabolic scaling to temperature and activity differ between water- and air-breathing ectothermic vertebrates.

    Get PDF
    Metabolism underpins all life-sustaining processes and varies profoundly with body size, temperature and locomotor activity. A current theory explains some of the size-dependence of metabolic rate (its mass exponent, b) through changes in metabolic level (L). We propose two predictive advances that: (a) combine the above theory with the evolved avoidance of oxygen limitation in water-breathers experiencing warming, and (b) quantify the overall magnitude of combined temperatures and degrees of locomotion on metabolic scaling across air- and water-breathers. We use intraspecific metabolic scaling responses to temperature (523 regressions) and activity (281 regressions) in diverse ectothermic vertebrates (fish, reptiles and amphibians) to show that b decreases with temperature-increased L in water-breathers, supporting surface area-related avoidance of oxygen limitation, whereas b increases with activity-increased L in air-breathers, following volume-related influences. This new theoretical integration quantitatively incorporates different influences (warming, locomotion) and respiration modes (aquatic, terrestrial) on animal energetics

    Performance of point-of-care HbA1c test devices: implications for use in clinical practice – a systematic review and meta-analysis

    Get PDF
    Regular monitoring of glycated hemoglobin subfraction A1c (HbA1c) in people with diabetes and treatment with glucose-lowering medications to improve glycaemic control can reduce the risk of developing complications [1]. In 2011, a World Health Organization consultation concluded that HbA1cat a threshold of 6.5% (48 mmol/mol) can be used as a diagnostic test for diabetes [2]. HbA1c monitoring often requires the patient to attend the health center twice: once to have blood taken and then returning to get test results and receive adjustments to medication. Point-of-care (POC) analysers are bench-top instruments that use a finger-prick blood sample and are designed for use in a treatment room or at the bed-side. They provide a test result within a few minutes allowing clinical decisions and medication changes to take place immediately. The suitability of many of these devices for the accurate measurement of HbA1c has been questioned, with some POC HbA1c test devices reported not to meet accepted accuracy and precision criteria [3]. Ideal imprecision goals for HbA1c should be coefficient of variation (CV) of <2% for HbA1c reported in % units (or <3% in SI units, mmol/mol) [4], [5], [6]. Most evaluations of POC HbA1c devices have taken place in laboratory settings [7], [8]; fewer studies have assessed device performance in a POC setting or with clinicians performing the tests [9], [10]. The only published review that has attempted to combine data from accuracy studies identified five studies covering three devices and compared correlation coefficients [11]. Systematically reporting and pooling data estimates of bias and precision between POC HbA1c devices and laboratory measurements would enable end users to assess which analysers best meet their analytical performance needs. This may be of particular importance for clinicians in primary care settings where much of the management of diabetes patients takes place. The comparison of accuracy between devices over the entire therapeutic range would need to be carried out by combining data on measurement error (bias) between POC and laboratory tests [12]. The aim of this study was to compare accuracy and precision of POC HbA1c devices with the local laboratory method based on data from published studies and discuss the clinical implications of the findings

    Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage

    Get PDF
    We used the instantaneous growth rate method to determine the effects of food, temperature, krill length, sex, and maturity stage on in situ summer growth of krill across the southwest Atlantic sector of the Southern Ocean. The main aims were to examine the separate effects of each variable and to generate a predictive model of growth based on satellite-derivable environmental data. Both growth increments in length on moulting (GIs) and daily growth rates (DGRs, mm d-1) ranged greatly among the 59 swarms, from 0.58–15% and 0.013–0.32 mm d-1. However, all swarms maintained positive mean growth, even those in the low chlorophyll a (Chl a) zone of the central Scotia Sea. Among a suite of indices of food quantity and quality, large-scale monthly Chl a values from SeaWiFS predicted krill growth the best. Across our study area, the great contrast between bloom and nonbloom regions was a major factor driving variation in growth rates, obscuring more subtle effects of food quality. GIs and DGRs decreased with increasing krill length and decreased above a temperature optimum of 0.5°C. This probably reflects the onset of thermal stress at the northern limit of krill’s range. Thus, growth rates were fastest in the ice edge blooms of the southern Scotia Sea and not at South Georgia as previously suggested. This reflects both the smaller size of the krill and the colder water in the south being optimum for growth. Males tended to have higher GIs than females but longer intermoult periods, leading to similar DGRs between sexes. DGRs of equivalent-size krill tended to decrease with maturity stage, suggesting the progressive allocation of energy toward reproduction rather than somatic growth. Our maximum DGRs are higher than most literature values, equating to a 5.7% increase in mass per day. This value fits within a realistic energy budget, suggesting a maximum carbon ration of ~20% d-1. Over the whole Scotia Sea/South Georgia area, the gross turnover of krill biomass was ~1% d-1

    Canalization of the evolutionary trajectory of the human influenza virus

    Get PDF
    Since its emergence in 1968, influenza A (H3N2) has evolved extensively in genotype and antigenic phenotype. Antigenic evolution occurs in the context of a two-dimensional 'antigenic map', while genetic evolution shows a characteristic ladder-like genealogical tree. Here, we use a large-scale individual-based model to show that evolution in a Euclidean antigenic space provides a remarkable correspondence between model behavior and the epidemiological, antigenic, genealogical and geographic patterns observed in influenza virus. We find that evolution away from existing human immunity results in rapid population turnover in the influenza virus and that this population turnover occurs primarily along a single antigenic axis. Thus, selective dynamics induce a canalized evolutionary trajectory, in which the evolutionary fate of the influenza population is surprisingly repeatable and hence, in theory, predictable.Comment: 29 pages, 5 figures, 10 supporting figure
    corecore