14 research outputs found

    The Soreq Applied Research Accelerator Facility (SARAF) - Overview, Research Programs and Future Plans

    Full text link
    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5×10105\times 10^{10} epithermal neutrons/sec), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: Precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6^6He, 8^8Li and 18,19,23^{18,19,23}Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).Comment: 32 pages, 31 figures, 10 tables, submitted as an invited review to European Physics Journal

    Fast chopper for single radio-frequency quadrupole bunch selection for neutron time-of-flight capabilities

    No full text
    A fast chopper system has been developed and tested for single bunch selection with the radio-frequency quadrupole (RFQ) accelerating element of the Soreq Applied Research Accelerator Facility (SARAF). The fast chopper consists of a high voltage (HV) deflector just before the RFQ, providing both positive and negative HV deflections and fast HV switching between polarities to enable momentary transmission of a single prebunch to the RFQ. Presently, the system enables single bunch selection for protons and deuterons at a repetition rate as determined by the user of up to 200 kHz, with bunch transmission of up to 50%, and with neighboring bunch contamination of less than 15%. Single bunch selection provides SARAF with fast neutron time-of-flight (TOF) capabilities. Measurements performed with liquid scintillation detectors show clear gamma and neutrons peaks, with TOF resolution of about 1 nanosecond FWHM. Beam dynamics simulations suggest possibilities for further improvements of the fast chopper and single bunch selection characteristics, with a significant lowering or elimination of the neighboring bunches, enhanced TOF resolution, and increased repetition rate to above 200 kHz. Fast neutron TOF capabilities, especially at phase II of SARAF, will provide exceptional opportunities for neutron induced reaction measurements for nuclear technology and fundamental research

    Precision β − ν correlation measurements with the Beta-decay Paul Trap

    No full text
    The Beta-decay Paul Trap (BPT) at Argonne National Laboratory has proven to be an extremely effective tool for high-precision tests of the Standard Model via measurements of the β − ν correlation in mass-8 isotopes. Using four double-sided silicon strip detectors (DSSDs) backed by plastic scintillators and surrounding the ions confined by the BPT, the kinematics of the decays of the mirror nuclei lithium-8 and boron-8 are overdetermined when all charged decay products are measured. The most stringent low-energy limit on an intrinsic tensor current in the weak interaction was set using the BPT in 2015 (Sternberg, M.G., et al., Phys. Rev. Lett. 115, 182501 2015) utilizing trapped lithium-8. Since then, similar data for boron-8 and higher statistics data for lithium-8 have been collected and are currently being analyzed. With the elimination of radio-frequency (RF) pickup from the DSSDs and a detailed investigation of experimental systematic errors, the uncertainty is now dominated by the contribution from recoil-order terms in the decay rate. Our eventual goal is to limit tensor currents in the weak interaction with relative precision at or below 0.1%
    corecore