682 research outputs found

    On the dependence of galaxy morphologies on galaxy mergers

    Get PDF
    The distribution of galaxy morphological types is a key test for models of galaxy formation and evolution, providing strong constraints on the relative contribution of different physical processes responsible for the growth of the spheroidal components. In this paper, we make use of a suite of semi-analytic models to study the efficiency of galaxy mergers in disrupting galaxy discs and building galaxy bulges. In particular, we compare standard prescriptions usually adopted in semi-analytic models, with new prescriptions proposed by Kannan et al., based on results from high-resolution hydrodynamical simulations, and we show that these new implementations reduce the efficiency of bulge formation through mergers. In addition, we compare our model results with a variety of observational measurements of the fraction of spheroid-dominated galaxies as a function of stellar and halo mass, showing that the present uncertainties in the data represent an important limitation to our understanding of spheroid formation. Our results indicate that the main tension between theoretical models and observations does not stem from the survival of purely disc structures (i.e. bulgeless galaxies), rather from the distribution of galaxies of different morphological types, as a function of their stellar mass.Comment: MNRAS in press, 11 pages, 5 figure

    Perturbations and Critical Behavior in the Self-Similar Gravitational Collapse of a Massless Scalar Field

    Get PDF
    This paper studies the perturbations of the continuously self-similar critical solution of the gravitational collapse of a massless scalar field (Roberts solution). The perturbation equations are derived and solved exactly. The perturbation spectrum is found to be not discrete, but occupying continuous region of the complex plane. The renormalization group calculation gives the value of the mass-scaling exponent equal to 1.Comment: 12 pages, RevTeX 3.1, 1 figur

    Self-Similar Collapse of Scalar Field in Higher Dimensions

    Get PDF
    This paper constructs continuously self-similar solution of a spherically symmetric gravitational collapse of a scalar field in n dimensions. The qualitative behavior of these solutions is explained, and closed-form answers are provided where possible. Equivalence of scalar field couplings is used to show a way to generalize minimally coupled scalar field solutions to the model with general coupling.Comment: RevTex 3.1, 15 pages, 3 figures; references adde

    The cosmic growth of the active black hole population at 1<z<2 in zCOSMOS, VVDS and SDSS

    Get PDF
    We present a census of the active black hole population at 1<z<2, by constructing the bivariate distribution function of black hole mass and Eddington ratio, employing a maximum likelihood fitting technique. The study of the active black hole mass function (BHMF) and the Eddington ratio distribution function (ERDF) allows us to clearly disentangle the active galactic nuclei (AGN) downsizing phenomenon, present in the AGN luminosity function, into its physical processes of black hole mass downsizing and accretion rate evolution. We are utilizing type-1 AGN samples from three optical surveys (VVDS, zCOSMOS and SDSS), that cover a wide range of 3 dex in luminosity over our redshift interval of interest. We investigate the cosmic evolution of the AGN population as a function of AGN luminosity, black hole mass and accretion rate. Compared to z = 0, we find a distinct change in the shape of the BHMF and the ERDF, consistent with downsizing in black hole mass. The active fraction or duty cycle of type-1 AGN at z~1.5 is almost flat as a function of black hole mass, while it shows a strong decrease with increasing mass at z=0. We are witnessing a phase of intense black hole growth, which is largely driven by the onset of AGN activity in massive black holes towards z=2. We finally compare our results to numerical simulations and semi-empirical models and while we find reasonable agreement over certain parameter ranges, we highlight the need to refine these models in order to match our observations.Comment: 31 pages, 28 figures, accepted for publication in MNRA

    Constraining AGN triggering mechanisms through the clustering analysis of active black holes

    Get PDF
    The triggering mechanisms for active galactic nuclei (AGN) are still debated. Some of the most popular ones include galaxy interactions (IT) and disc instabilities (DIs). Using an advanced semi-analytic model (SAM) of galaxy formation, coupled to accurate halo occupation distribution modelling, we investigate the imprint left by each separate triggering process on the clustering strength of AGN at small and large scales. Our main results are as follows: (i) DIs, irrespective of their exact implementation in the SAM, tend to fall short in triggering AGN activity in galaxies at the centre of haloes wit

    Painful knee joint after ACL reconstruction using biodegradable interference screws- SPECT/CT a valuable diagnostic tool? A case report

    Get PDF
    With the presented case we strive to introduce combined single photon emission computerized tomography and conventional computer tomography (SPECT/CT) as new diagnostic imaging modality and illustrate the possible clinical value in patients after ACL reconstruction. We report the case of a painful knee due to a foreign body reaction and delayed degradation of the biodegradable interference screws after ACL reconstruction. The MRI showed an intact ACL graft, a possible tibial cyclops lesion and a patella infera. There was no increased fluid collection within the bone tunnels. The 99mTc-HDP-SPECT/CT clearly identified a highly increased tracer uptake around and within the tibial and femoral tunnels and the patellofemoral joint. On 3D-CT out of the SPECT/CT data the femoral graft attachment was shallow (50% along the Blumensaat's line) and high in the notch. At revision arthroscopy a diffuse hypertrophy of the synovium, scarring of the Hoffa fat pad and a cyclops lesion of the former ACL graft was found. The interference screws were partially degraded and under palpation and pressure a grey fluid-like substance drained into the joint. The interference screws and the ACL graft were removed and an arthrolysis performed

    Relativistic MHD with Adaptive Mesh Refinement

    Get PDF
    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the ∇⋅B=0\nabla\cdot {\bf B}=0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table

    Anti-inflammatory, antinociceptive, and antipyretic effects of methanol extract of Cariniana rubra stem bark in animal models

    Get PDF
    Schmeda-Hirschmann, G (Schmeda-Hirschmann, Guillermo) Univ Talca, IQRN, Talca, ChileCariniana rubra Miers (Lecythidaceae), popularly known as "jequitiba-vermelho", is a large Brazilian tree whose bark is used in infusion and decoction for the treatment of inflammatory conditions. This study aims to assess the anti-inflammatory, antinociceptive, and antipyretic effects of Cariniana rubra methanolic stem bark extract (EMCr) using experimental animals. Anti-inflammatory activity of EMCr was tested on carrageenan and dextran-induced rat paw edema, carrageenan-induced pleurisy in rats and acetic acid-increase vascular permeability in mice. Antinociceptive and antipyretic activities were evaluated using acetic acid-induced writhing, formalin and hot-plate tests in mice, as well as brewer's yeast-induced pyrexia in rats. The extract inhibitied carrageenan and dextran-induced edema, reduced exudate volume and leukocyte migration on the carrageenan-induced pleurisy and on the vascular permeability increase induced by acetic acid. The EMCr inhibited nociception on the acetic acid-induced writhing and in the second phase of formalin test, and decreased rectal temperature. It was, however, inactive against thermal nociception. Phytochemical analysis with EMCr showed the occurrence of saponins, triterpenes, sterols and phenolic compounds. Phytosterols (beta-sitosterol, stigmasterol), pentacyclic triterpenes (alpha- and beta-amyrin as a mixture), arjunolic acid, a phytosterol glycoside (sitosterol 3-O-beta-D-glucopyranoside), and triterpenoid saponins (28-beta-glucopyranosyl-23-O-acetyl arjunolic acid; 3-O-beta-glucopyranosyl arjunolic acid and 28-O-[alpha-L-Rhamnopyranosyl-(1 -> 2)-beta-glucopyranosyl]-23-O-acetyl arjunolic acid) were the main identified compounds. It can be presumed that EMCr caused their effects by inhibiting the liberation and/or action of different inflammatory mediators. These findings support the traditional use of Cariniana rubra preparations to treat inflammation

    A novel implantation technique for engineered osteo-chondral grafts

    Get PDF
    We present a novel method to support precise insertion of engineered osteochondral grafts by pulling from the bone layer, thereby minimizing iatrogenic damage associated with direct manipulation of the cartilage layer. Grafts were generated by culturing human expanded chondrocytes on HyaffÂź-11 meshes, sutured to TutoboneÂź spongiosa cylinders. Through the bone layer, shaped to imitate the surface-contours of the talar dome, two sutures were applied: the first for anterograde implantation, to pull the graft into the defect, and the second for retrograde correction, in case of a too deep insertion. All grafts could be correctly positioned into osteochondral lesions created in cadaveric ankle joints with good fit to the surrounding cartilage. Implants withstood short-term dynamic stability tests applied to the ankle joint, without delamination or macroscopic damage. The developed technique, by allowing precise and stable positioning of osteochondral grafts without iatrogenic cartilage damage, is essential for the implantation of engineered tissues, where the cartilage layer is not fully mechanically developed, and could be considered also for conventional autologous osteochondral transplantatio

    Homothetic Self-Similar Solutions of the Three-Dimensional Brans-Dicke Gravity

    Full text link
    All homothetic self-similar solutions of the Brans-Dicke scalar field in three-dimensional spacetime with circular symmetry are found in closed form.Comment: latex, five pages, without figur
    • 

    corecore