25,384 research outputs found
Superconductivity from Undressing
Photoemission experiments in high cuprates indicate that quasiparticles
are heavily 'dressed' in the normal state, particularly in the low doping
regime. Furthermore these experiments show that a gradual undressing occurs
both in the normal state as the system is doped and the carrier concentration
increases, as well as at fixed carrier concentration as the temperature is
lowered and the system becomes superconducting. A similar picture can be
inferred from optical experiments. It is argued that these experiments can be
simply understood with the single assumption that the quasiparticle dressing is
a function of the local carrier concentration. Microscopic Hamiltonians
describing this physics are discussed. The undressing process manifests itself
in both the one-particle and two-particle Green's functions, hence leads to
observable consequences in photoemission and optical experiments respectively.
An essential consequence of this phenomenology is that the microscopic
Hamiltonians describing it break electron-hole symmetry: these Hamiltonians
predict that superconductivity will only occur for carriers with hole-like
character, as proposed in the theory of hole superconductivity
Quasiparticle undressing in a dynamic Hubbard model: exact diagonalization study
Dynamic Hubbard models have been proposed as extensions of the conventional
Hubbard model to describe the orbital relaxation that occurs upon double
occupancy of an atomic orbital. These models give rise to pairing of holes and
superconductivity in certain parameter ranges. Here we explore the changes in
carrier effective mass and quasiparticle weight and in one- and two-particle
spectral functions that occur in a dynamic Hubbard model upon pairing, by exact
diagonalization of small systems. It is found that pairing is associated with
lowering of effective mass and increase of quasiparticle weight, manifested in
transfer of spectral weight from high to low frequencies in one- and
two-particle spectral functions. This 'undressing' phenomenology resembles
observations in transport, photoemission and optical experiments in high T_c
cuprates. This behavior is contrasted with that of a conventional electron-hole
symmetric Holstein-like model with attractive on-site interaction, where
pairing is associated with 'dressing' instead of 'undressing'
Electromotive forces and the Meissner effect puzzle
In a voltaic cell, positive (negative) ions flow from the low (high)
potential electrode to the high (low) potential electrode, driven by an
`electromotive force' which points in opposite direction and overcomes the
electric force. Similarly in a superconductor charge flows in direction
opposite to that dictated by the Faraday electric field as the magnetic field
is expelled in the Meissner effect. The puzzle is the same in both cases: what
drives electric charges against electromagnetic forces? I propose that the
answer is also the same in both cases: kinetic energy lowering, or `quantum
pressure'
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates
Experimental evidence indicates that the superconducting transition in high
cuprates is an 'undressing' transition. Microscopic mechanisms giving
rise to this physics were discussed in the first paper of this series. Here we
discuss the calculation of the single particle Green's function and spectral
function for Hamiltonians describing undressing transitions in the normal and
superconducting states. A single parameter, , describes the strength
of the undressing process and drives the transition to superconductivity. In
the normal state, the spectral function evolves from predominantly incoherent
to partly coherent as the hole concentration increases. In the superconducting
state, the 'normal' Green's function acquires a contribution from the anomalous
Green's function when is non-zero; the resulting contribution to
the spectral function is for hole extraction and for hole
injection. It is proposed that these results explain the observation of sharp
quasiparticle states in the superconducting state of cuprates along the
direction and their absence along the direction.Comment: figures have been condensed in fewer pages for easier readin
Optical sum rule violation, superfluid weight and condensation energy in the cuprates
The model of hole superconductivity predicts that the superfluid weight in
the zero-frequency -function in the optical conductivity has an
anomalous contribution from high frequencies, due to lowering of the system's
kinetic energy upon entering the superconducting state. The lowering of kinetic
energy, mainly in-plane in origin, accounts for both the condensation energy of
the superconductor as well as an increased potential energy due to larger
Coulomb repulsion in the paired state. It leads to an apparent violation of the
conductivity sum rule, which in the clean limit we predict to be substantially
larger for in-plane than for c-axis conductivity. However, because cuprates are
in the dirty limit for c-axis transport, the sum rule violation is found to be
greatly enhanced in the c-direction. The model predicts the sum rule violation
to be largest in the underdoped regime and to decrease with doping, more
rapidly in the c-direction that in the plane. So far, experiments have detected
sum rule violation in c-axis transport in several cuprates, as well as a
decrease and disappearance of this violation for increasing doping, but no
violation in-plane. We explore the predictions of the model for a wide range of
parameters, both in the absence and in the presence of disorder, and the
relation with current experimental knowledge.Comment: submitted to Phys.Rev.
Modelling tri-bimaximal neutrino mixing
We model tri-bimaximal lepton mixing from first principles in a way that
avoids the problem of the vacuum alignment characteristic of such models. This
is achieved by using a softly broken A4 symmetry realized with an isotriplet
fermion, also triplet under A4. No scalar A4-triplet is introduced. This
represents one possible realization of general schemes characterized by the
minimal set of either three or five physical parameters. In the three parameter
versions mee vanishes, while in the five parameter schemes the absolute scale
of neutrino mass, although not predicted, is related to the two Majorana
phases. The model realization we discuss is potentially testable at the LHC
through the peculiar leptonic decay patterns of the fermionic and scalar
triplets.Comment: some changing, reference adde
Leptoquarks: Neutrino masses and accelerator phenomenology
Leptoquark-Higgs interactions induce mixing between leptoquark states with
different chiralities once the electro-weak symmetry is broken. In such LQ
models Majorana neutrino masses are generated at 1-loop order. Here we
calculate the neutrino mass matrix and explore the constraints on the parameter
space enforced by the assumption that LQ-loops explain current neutrino
oscillation data. LQs will be produced at the LHC, if their masses are at or
below the TeV scale. Since the fermionic decays of LQs are governed by the same
Yukawa couplings, which are responsible for the non-trivial neutrino mass
matrix, several decay branching ratios of LQ states can be predicted from
measured neutrino data. Especially interesting is that large lepton flavour
violating rates in muon and tau final states are expected. In addition, the
model predicts that, if kinematically possible, heavier LQs decay into lighter
ones plus either a standard model Higgs boson or a gauge boson.
Thus, experiments at the LHC might be able to exclude the LQ mechanism as
explanation of neutrino data.Comment: 28 pages, 10 figure
- …