19,740 research outputs found
Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model
A one-dimensional model of electrons locally coupled to spin-1/2 degrees of
freedom is studied by numerical techniques. The model is one in the class of
that describe the relaxation of an atomic orbital
upon double electron occupancy due to electron-electron interactions. We study
the parameter regime where pairing occurs in this model by exact
diagonalization of small clusters. World line quantum Monte Carlo simulations
support the results of exact diagonalization for larger systems and show that
kinetic energy is lowered when pairing occurs. The qualitative physics of this
model and others in its class, obtained through approximate analytic
calculations, is that superconductivity occurs through hole undressing even in
parameter regimes where the effective on-site interaction is strongly
repulsive. Our numerical results confirm the expected qualitative behavior, and
show that pairing will occur in a substantially larger parameter regime than
predicted by the approximate low energy effective Hamiltonian.Comment: Some changes made in response to referees comments. To be published
in Phys.Rev.
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates
Experimental evidence indicates that the superconducting transition in high
cuprates is an 'undressing' transition. Microscopic mechanisms giving
rise to this physics were discussed in the first paper of this series. Here we
discuss the calculation of the single particle Green's function and spectral
function for Hamiltonians describing undressing transitions in the normal and
superconducting states. A single parameter, , describes the strength
of the undressing process and drives the transition to superconductivity. In
the normal state, the spectral function evolves from predominantly incoherent
to partly coherent as the hole concentration increases. In the superconducting
state, the 'normal' Green's function acquires a contribution from the anomalous
Green's function when is non-zero; the resulting contribution to
the spectral function is for hole extraction and for hole
injection. It is proposed that these results explain the observation of sharp
quasiparticle states in the superconducting state of cuprates along the
direction and their absence along the direction.Comment: figures have been condensed in fewer pages for easier readin
Superconductivity from Undressing
Photoemission experiments in high cuprates indicate that quasiparticles
are heavily 'dressed' in the normal state, particularly in the low doping
regime. Furthermore these experiments show that a gradual undressing occurs
both in the normal state as the system is doped and the carrier concentration
increases, as well as at fixed carrier concentration as the temperature is
lowered and the system becomes superconducting. A similar picture can be
inferred from optical experiments. It is argued that these experiments can be
simply understood with the single assumption that the quasiparticle dressing is
a function of the local carrier concentration. Microscopic Hamiltonians
describing this physics are discussed. The undressing process manifests itself
in both the one-particle and two-particle Green's functions, hence leads to
observable consequences in photoemission and optical experiments respectively.
An essential consequence of this phenomenology is that the microscopic
Hamiltonians describing it break electron-hole symmetry: these Hamiltonians
predict that superconductivity will only occur for carriers with hole-like
character, as proposed in the theory of hole superconductivity
Design of aircraft turbine fan drive gear transmission system
The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts
Relational lattices via duality
The natural join and the inner union combine in different ways tables of a
relational database. Tropashko [18] observed that these two operations are the
meet and join in a class of lattices-called the relational lattices- and
proposed lattice theory as an alternative algebraic approach to databases.
Aiming at query optimization, Litak et al. [12] initiated the study of the
equational theory of these lattices. We carry on with this project, making use
of the duality theory developed in [16]. The contributions of this paper are as
follows. Let A be a set of column's names and D be a set of cell values; we
characterize the dual space of the relational lattice R(D, A) by means of a
generalized ultrametric space, whose elements are the functions from A to D,
with the P (A)-valued distance being the Hamming one but lifted to subsets of
A. We use the dual space to present an equational axiomatization of these
lattices that reflects the combinatorial properties of these generalized
ultrametric spaces: symmetry and pairwise completeness. Finally, we argue that
these equations correspond to combinatorial properties of the dual spaces of
lattices, in a technical sense analogous of correspondence theory in modal
logic. In particular, this leads to an exact characterization of the finite
lattices satisfying these equations.Comment: Coalgebraic Methods in Computer Science 2016, Apr 2016, Eindhoven,
Netherland
A formal support to business and architectural design for service-oriented systems
Architectural Design Rewriting (ADR) is an approach for the design of software architectures developed within Sensoria by reconciling graph transformation and process calculi techniques. The key feature that makes ADR a suitable and expressive framework is the algebraic handling of structured graphs, which improves the support for specification, analysis and verification of service-oriented architectures and applications. We show how ADR is used as a formal ground for high-level modelling languages and approaches developed within Sensoria
R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay
We consider contributions of R-parity conserving softly broken supersymmetry
(SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating
sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY
model with a Majorana neutrino mass. The new R-parity conserving SUSY
contributions to \znbb are realized at the level of box diagrams. We derive
the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and
the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to
the Majorana neutrino mass is also derived.
Given the data on the \znbb-decay half-life of Ge and the neutrino
mass we obtain constraints on the (B-L)-violating sneutrino mass. These
constraints leave room for accelerator searches for certain manifestations of
the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most
probably too tight for first generation (B-L)-violating sneutrino masses to be
searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende
- …