133 research outputs found

    The Distribution and Migration of 137Cs in Oak (Quercus serrata) and Cedar (Cryptomeria japonica) Forest Organic Fractions

    Get PDF
    To analyse the 137Cs distribution and migration under various fractions of organic matter layers, this study investigated easily recognizable, originally shaped organic L-fractions, and not easily recognizable, early fermented and fragmented organic F-fractions, of both oak (Quercus serrata) and cedar (Cryptomeria japonica) sampled from Osawa watershed sites at Nihonmatsu City, Fukushima Prefecture, Japan. The organic materials were put on top of soil columns from Field Museum (FM) Tamakyuryo in Hachioji City, Tokyo. The 137Cs vertical distribution in forest soil profiles was analyzed using the relaxation mass depth, ho (kg m−2). Soil columns with both L and F- organic layer fractions of both oak and cedar, labelled as Oak-L, Oak-F, Cedar-L and Cedar-F with four replications (n = 16), were set up by the laboratory column-based method and kept under five months’ incubation period. Soil columns after incubation were sampled at depths of 0–1 cm, 1–2 cm, 2–5 cm and 5–10 cm. Results of 137Cs inventory in the organic fractions showed that 86% (oak and cedar) of the total organic layer fractions 137Cs inventory accumulated within the F-layer, indicating that the transformation of litter is a huge source for potentially mobile 137Cs, especially the oak F-layer (67% 137Cs inventory) and further continuous transfer into the forest soil mineral layers. A higher ho in L treated soils (Oak-L and Cedar-L) compared to the F treatments implied that the low 137Cs amounts penetrated faster and deeper due to their water-soluble nature. Furthermore, Cedar-F showed a higher ho of 24.3 kg m−2 than Oak-F of ho, 14.0 kg m−2, and a significant positive relationship between 137Cs retention and total carbon (TC) (p < 0.05) suggested the influence of soil organic matter on 137Cs penetration and retention. The C/N (carbon nitrogen ratio) results revealed that organic matter fractions of high C/N including 137Cs, as observed in Cedar-F, in which decomposition does not advance, penetrates soil depths while the organic matter fraction of low C/N, observed in Oak-F, showed that decomposition advanced to release 137Cs which was held by adsorption unto the RIP (radiocesium interception potential) of soil surface. In addition, infiltration by water as a transportation process was suggested to largely influence the downward migration and retention of 137Cs at lower depths of Cedar-F.Japan Society for the Promotion of SciencePeer Reviewe

    Conversion to complete resection with mFOLFOX6 with bevacizumab or cetuximab based on K‐RAS status for unresectable colorectal liver metastasis (BECK study): Long‐term results of survival

    Get PDF
    [Background/Purpose]To investigate the long‐term outcome and entire treatment course of patients with technically unresectable CRLM who underwent conversion hepatectomy and to examine factors associated with conversion to hepatectomy. [Methods]Recurrence and survival data with long‐term follow‐up were analyzed in the cohort of a multi‐institutional phase II trial for technically unresectable colorectal liver metastases (the BECK study). [Results]A total of 22/12 patients with K‐RAS wild‐type/mutant tumors were treated with mFOLFOX6 + cetuximab/bevacizumab. The conversion R0/1 hepatectomy rate was significantly higher in left‐sided primary tumors than in right‐sided tumors (75.0% vs 30.0%, P = .022). The median follow‐up was 72.6 months. The 5‐year overall survival (OS) rate in the entire cohort was 48.1%. In patients who underwent R0/1 hepatectomy (n = 21), the 5‐year RFS rate and OS rate were 19.1% and 66.3%, respectively. At the final follow‐up, seven patients had no evidence of disease, five were alive with disease, and 20 had died from their original cancer. All 16 patients who achieved 5‐year survival underwent conversion hepatectomy, and 11 of them underwent further resection for other recurrences (median: 2, range: 1‐4). [Conclusions]Conversion hepatectomy achieved a similar long‐term survival to the results of previous studies in initially resectable patients, although many of them experienced several post‐hepatectomy recurrences. Left‐sided primary was found to be the predictor for conversion hepatectomy

    Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat

    Get PDF
    Food selection is essential for metabolic homeostasis and is influenced by nutritional state, food palatability, and social factors such as stress. However, the mechanism responsible for selection between a high-carbohydrate diet (HCD) and a high-fat diet (HFD) remains unknown. Here, we show that activation of a subset of corticotropin-releasing hormone (CRH)-positive neurons in the rostral region of the paraventricular hypothalamus (PVH) induces selection of an HCD over an HFD in mice during refeeding after fasting, resulting in a rapid recovery from the change in ketone metabolism. These neurons manifest activation of AMP-activated protein kinase (AMPK) during food deprivation, and this activation is necessary and sufficient for selection of an HCD over an HFD. Furthermore, this effect is mediated by carnitine palmitoyltransferase 1c (CPT1c). Thus, our results identify the specific neurons and intracellular signaling pathway responsible for regulation of the complex behavior of selection between an HCD and an HFD

    Ribonuclease Activity of Dis3 Is Required for Mitotic Progression and Provides a Possible Link between Heterochromatin and Kinetochore Function

    Get PDF
    BACKGROUND: Cellular RNA metabolism has a broad range of functional aspects in cell growth and division, but its role in chromosome segregation during mitosis is only poorly understood. The Dis3 ribonuclease is a key component of the RNA-processing exosome complex. Previous isolation of the dis3-54 cold-sensitive mutant of fission yeast Schizosaccharomyces pombe suggested that Dis3 is also required for correct chromosome segregation. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the progression of mitosis is arrested in dis3-54, and that segregation of the chromosomes is blocked by activation of the mitotic checkpoint control. This block is dependent on the Mad2 checkpoint protein. Double mutant and inhibitor analyses revealed that Dis3 is required for correct kinetochore formation and function, and that this activity is monitored by the Mad2 checkpoint. Dis3 is a member of the highly conserved RNase II family and is known to be an essential subunit of the exosome complex. The dis3-54 mutation was found to alter the RNaseII domain of Dis3, which caused a reduction in ribonuclease activity in vitro. This was associated with loss of silencing of an ura4(+) reporter gene inserted into the outer repeats (otr) and central core (cnt and imr) regions of the centromere. On the other hand, centromeric siRNA maturation and formation of the RITS RNAi effector complex was normal in the dis3-54 mutant. Micrococcal nuclease assay also suggested the overall chromatin structure of the centromere was not affected in dis3-54 mutant. CONCLUSIONS/SIGNIFICANCE: RNase activity of Dis3, a core subunit of exosome, was found to be required for proper kinetochore formation and establishment of kinetochore-microtubule interactions. Moreover, Dis3 was suggested to contribute to kinetochore formation through an involvement in heterochromatic silencing at both outer centromeric repeats and within the central core region. This activity is likely monitored by the mitotic checkpoint, and distinct from that of RNAi-mediated heterochromatin formation directly targeting outer centromeric repeats

    Unc-51/ATG1 Controls Axonal and Dendritic Development via Kinesin-Mediated Vesicle Transport in the Drosophila Brain

    Get PDF
    Background:Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.Methodology/Principal Findings:In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.Conclusions/Significance:Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons

    発症早期ALS患者に対する超高用量メチルコバラミンの有効性・安全性について : ランダム化比較試験

    Get PDF
    Importance: Post hoc analysis in a phase 2/3 trial indicated ultra-high dose methylcobalamin slowed decline of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) total score at week 16 as well as at week 182, without increase of adverse events, in patients with amyotrophic lateral sclerosis (ALS) who were enrolled within 1 year from onset. Objective: To validate the efficacy and safety of ultra-high dose methylcobalamin for patients with ALS enrolled within 1 year of onset. Design: A multicenter, placebo-controlled, double-blind, randomized phase 3 trial with 12-week observation and 16-week randomized period, conducted from October 2017 to September 2019. Setting: Twenty-five neurology centers in Japan. Participants: Patients with ALS diagnosed within 1 year of onset by the updated Awaji criteria were initially enrolled. Of those, patients fulfilling the following criteria after 12-week observation were eligible for randomization: 1- or 2-point decrease in ALSFRS-R total score, a percent forced vital capacity over 60%, no history of noninvasive respiratory support and tracheostomy, and being ambulant. The target number was 64 in both methylcobalamin and placebo groups. Of 203 patients enrolled in the observation, 130 patients (age, 61.0 ± 11.7 years; female, 56) met the criteria and were randomly assigned through an electronic web-response system to methylcobalamin or placebo (65 for each). Of these, 129 patients were eligible for the full analysis set, and 126 completed the double-blind stage. Interventions: Intramuscular injection of methylcobalamin 50 mg or placebo twice weekly for 16 weeks. Main outcomes and measures: The primary endpoint was change in ALSFRS-R total score from baseline to week 16 in the full analysis set. Results: The least-squares mean difference in ALSFRS-R total score at week 16 of the randomized period was 1.97 points greater with methylcobalamin than placebo (−2.66 versus −4.63; 95% CI, 0.44–3.50; P = 0.012). The incidence of adverse events was similar between the two groups. Conclusions and relevance: Ultra-high dose methylcobalamin was efficacious in slowing functional decline and safe in the 16-week treatment period in ALS patients in the early stage and with moderate progression rate. Trial registration: UMIN-CTR Identifier: UMIN000029588 (umin.ac.jp/ctr); ClinicalTrials.gov Identifier: NCT03548311 (clinicaltrials.gov

    Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2010: General view of the pathogens\u27 antibacterial susceptibility

    Get PDF
    The nationwide surveillance on antimicrobial susceptibility of bacterial respiratory pathogens from patients in Japan, was conducted by Japanese Society of Chemotherapy, Japanese Association for Infectious Diseases and Japanese Society for Clinical Microbiology in 2010.The isolates were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections during the period from January and April 2010 by three societies. Antimicrobial susceptibility testing was conducted at the central reference laboratory according to the method recommended by Clinical and Laboratory Standard Institutes using maximum 45 antibacterial agents.Susceptibility testing was evaluable with 954 strains (206 Staphylococcus aureus, 189 Streptococcus pneumoniae, 4 Streptococcus pyogenes, 182 Haemophilus influenzae, 74 Moraxella catarrhalis, 139 Klebsiella pneumoniae and 160 Pseudomonas aeruginosa). Ratio of methicillin-resistant S.aureus was as high as 50.5%, and those of penicillin-intermediate and -resistant S.pneumoniae were 1.1% and 0.0%, respectively. Among H.influenzae, 17.6% of them were found to be β-lactamase-non-producing ampicillin (ABPC)-intermediately resistant, 33.5% to be β-lactamase-non-producing ABPC-resistant and 11.0% to be β-lactamase-producing ABPC-resistant strains. Extended spectrum β-lactamase-producing K.pneumoniae and multi-drug resistant P.aeruginosa with metallo β-lactamase were 2.9% and 0.6%, respectively.Continuous national surveillance of antimicrobial susceptibility of respiratory pathogens is crucial in order to monitor changing patterns of susceptibility and to be able to update treatment recommendations on a regular basis
    corecore