35 research outputs found

    Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. However, determining protein-coding genes for most new genomes is almost completely performed by inference using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function.</p> <p>Results</p> <p>We experimentally annotated the bacterial pathogen <it>Salmonella </it>Typhimurium 14028, using "shotgun" proteomics to accurately uncover the translational landscape and post-translational features. The data provide protein-level experimental validation for approximately half of the predicted protein-coding genes in <it>Salmonella </it>and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene prediction programs, as well as evidence suggesting a role for one of these novel ORFs in <it>Salmonella </it>pathogenesis. We also characterized post-translational features in the <it>Salmonella </it>genome, including chemical modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of chemical modifications than previously thought including several novel modifications. Our <it>in vivo </it>proteolysis data identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function.</p> <p>Conclusion</p> <p>This work highlights several ways in which application of proteomics data can improve the quality of genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of <it>Salmonella </it>as a resource for systems analysis.</p

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    The three-dimensional structure of the aspartyl protease from the HIV-1 isolate BRU

    No full text
    International audienceThe crystal structure of the aspartyl protease encoded by the gene pol of the human immunodeficiency virus (HIV-1, isolate BRU) has been determined to 2.7 A resolution. The enzyme, expressed as an insoluble denatured polypeptide in inclusion bodies of Escherichia coli has been renatured and crystallized. It differs by several amino acid replacements from the homologous enzymes of other HIV-1 isolates. A superposition of the C alpha-backbone of the BRU protease with that of the SF2 protease gives a roots mean square positional difference of 0.45 A. Thus, neither the denaturation/renaturation process nor the amino acid replacements have a noticeable effect on the three-dimensional structure of the BRU protease or on the detailed conformation of the catalytic site, which is very similar to that of other aspartyl proteases

    Peierls potential and kink-pair mechanism in high-pressure MgSiO 3 perovskite: An atomic scale study

    No full text
    International audienceThe motion of [100](010) screw dislocations via a kink-pair mechanism is investigated in high-pressure MgSiO3 perovskite by means of atomistic calculations and an elastic interaction model for kink nucleation. Atomistic calculations based on the nudged elastic band method provide the Peierls potential, which is shown to be dynamically asymmetric and stress dependent. The elastic interaction model adjusted to match kink width computed atomistically, is used to evaluate the critical nucleation enthalpy. We demonstrate that the kink-pair mechanism in MgSiO3 perovskite is controlled by the nucleation of kinks along the [100] screw dislocation

    Mutational analysis of amino acid positions crucial for IgE-binding epitopes of the major apple (Malus domestica) allergen, Mal d 1

    Get PDF
    Background: Individual amino acid residues of the major birch pollen allergen, Bet v 1, have been identified to be crucial for IgE recognition. The objective of the present study was to evaluate whether this concept was applicable for the Bet v 1-homologous apple allergen, Mal d 1. Methods: A Mal d 1 five-point mutant was produced by PCR techniques, cloned into pMW 172 and expressed in Escherichia coli BL21(DE3) cells. To evaluate the allergenic properties of the engineered protein compared to Mal d 1 wild-type IgE immunoblotting, ELISA, peripheral blood monocytes proliferation assays, and skin prick tests were performed. Results: The Mal d 1 mutant showed reduced capacity to bind specific IgE as compared to wild-type Mal d 1 in in vitro assays in the majority of the sera tested. In ELISA, 10 out of 14 serum samples displayed an 88-30% decrease in IgE binding to Mal d 1 mutant compared to wild-type Mal d 1. Skin prick tests in apple-allergic patients (n = 2) confirmed the markedly decreased ability of the Mal d 1 mutant to induce allergic reactions in vivo. However, the relevant T cell epitopes were present in the mutated molecule according to peripheral blood mononuclear cell proliferation assays. Conclusions: Our findings suggest that it is possible to modulate the IgE-binding properties of allergens by single amino acid substitutions at crucial positions which might be useful for future immunotherapy of birch-pollen-associated food allergies which are not ameliorated by birch pollen immunotherapy. Copyright (C) 2006 S. Karger AG, Basel
    corecore