31 research outputs found

    Radio Frequency Spectra of 388 Bright 74 MHz Sources

    Full text link
    As a service to the community, we have compiled radio frequency spectra from the literature for all sources within the VLA Low Frequency Sky Survey (VLSS) that are brighter than 15 Jy at 74 MHz. Over 160 references were used to maximize the amount of spectral data used in the compilation of the spectra, while also taking care to determine the corrections needed to put the flux densities from all reference on the same absolute flux density scale. With the new VLSS data, we are able to vastly improve upon previous efforts to compile spectra of bright radio sources to frequencies below 100 MHz because (1) the VLSS flux densities are more reliable than those from some previous low frequency surveys and (2) the VLSS covers a much larger area of the sky (declination >-30 deg.) than many other low frequency surveys (e.g., the 8C survey). In this paper, we discuss how the spectra were constructed and how parameters quantifying the shapes of the spectra were derived. Both the spectra and the shape parameters are made available here to assist in the calibration of observations made with current and future low frequency radio facilities.Comment: Accepted to ApJ

    Rapid and slow: Varying magma ascent rates as a mechanism for Vulcanian explosions

    Get PDF
    Vulcanian explosions are one of the most common types of volcanic activity observed at silicic volcanoes. Magma ascent rates are often invoked as being the fundamental control on their explosivity, yet this factor is poorly constrained for low magnitude end-member Vulcanian explosions, which are particularly poorly understood, partly due to the rarity of ash samples and low gas fluxes. We describe ash generated by small Vulcanian explosions at VolcĂĄn de Colima in 2013, where we document for the first time marked differences in the vesicularity, crystal characteristics (volume fraction, size and shape) and glass compositions in juvenile material from discrete events. We interpret these variations as representing differing ascent styles and speeds of magma pulses within the conduit. Heterogeneous degassing during ascent leads to fast ascending, gas-rich magma pulses together with slow ascending gas-poor magma pulses within the same conduit. This inferred heterogeneity is complemented by SO2 flux data, which show transient episodes of both open and closed system degassing, indicating efficient shallow fracture sealing mechanisms, which allows for gas overpressure to generate small Vulcanian explosions

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Sediment Yield in Mountain Basins, Analysis, and Management: The SMART-SED Project

    No full text
    Sediment yield from mountain basins and solid transport in rivers are widely studied and still represent a major issue when dealing with hydrogeological hazard. The correct determination of flooding scenarios involving huge amounts of debris also has implications for cities and human infrastructure safety. However, studies focused on catchment scale modeling tend to decouple the hydraulic processes from the sediment yield processes. Indeed, a large amount of hydraulics research literature has focused on hydro-morphological river models in which the sediment yield must be provided only as a boundary condition. This approach has clear limits, and decoupling such processes could lead to a weak understanding of the complexity of interactions within the watershed. To overcome such limitations, a new approach is proposed. The project we present aims to develop a complete model able to simulate sediment yield: from slope erosion down to in flow transport. The use of innovative mathematical approaches seeks to improve accuracy and performance over classical models and to find a right balance between computational cost and detailed description of physical processes. The model relies mainly on preexisting geographic databases to retrieve data. A set of test synthetic cases are also presented in the final part of the work
    corecore