54 research outputs found

    Dogs and humans respond to emotionally competent stimuli by producing different facial actions

    Get PDF
    The commonality of facial expressions of emotion has been studied in different species since Darwin, with most of the research focusing on closely related primate species. However, it is unclear to what extent there exists common facial expression in species more phylogenetically distant, but sharing a need for common interspecific emotional understanding. Here we used the objective, anatomically-based tools, FACS and DogFACS (Facial Action Coding Systems), to quantify and compare human and domestic dog facial expressions in response to emotionally-competent stimuli associated with different categories of emotional arousal. We sought to answer two questions: Firstly, do dogs display specific discriminatory facial movements in response to different categories of emotional stimuli? Secondly, do dogs display similar facial movements to humans when reacting in emotionally comparable contexts? We found that dogs displayed distinctive facial actions depending on the category of stimuli. However, dogs produced different facial movements to humans in comparable states of emotional arousal. These results refute the commonality of emotional expression across mammals, since dogs do not display human-like facial expressions. Given the unique interspecific relationship between dogs and humans, two highly social but evolutionarily distant species sharing a common environment, these findings give new insight into the origin of emotion expression

    Epigenetic re-wiring of breast cancer by pharmacological targeting of C-terminal binding protein

    Get PDF
    The C-terminal binding protein (CtBP) is an NADH-dependent dimeric family of nuclear proteins that scaffold interactions between transcriptional regulators and chromatin-modifying complexes. Its association with poor survival in several cancers implicates CtBP as a promising target for pharmacological intervention. We employed computer-assisted drug design to search for CtBP inhibitors, using quantitative structure-activity relationship (QSAR) modeling and docking. Functional screening of these drugs identified 4 compounds with low toxicity and high water solubility. Micro molar concentrations of these CtBP inhibitors produces significant de-repression of epigenetically silenced pro-epithelial genes, preferentially in the triple-negative breast cancer cell line MDA-MB-231. This epigenetic reprogramming occurs through eviction of CtBP from gene promoters; disrupted recruitment of chromatin-modifying protein complexes containing LSD1, and HDAC1; and re-wiring of activating histone marks at targeted genes. In functional assays, CtBP inhibition disrupts CtBP dimerization, decreases cell migration, abolishes cellular invasion, and improves DNA repair. Combinatorial use of CtBP inhibitors with the LSD1 inhibitor pargyline has synergistic influence. Finally, integrated correlation of gene expression in breast cancer patients with nuclear levels of CtBP1 and LSD1, reveals new potential therapeutic vulnerabilities. These findings implicate a broad role for this class of compounds in strategies for epigenetically targeted therapeutic intervention

    A dimensional summation account of polymorphous category learning

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.Data and code availaibility: The data and code for all analyses for all experiments are available at the OSF addresses given in each Results section. The stimuli are available at the same locations.Polymorphous concepts are hard to learn, and this is perhaps surprising because they, like many natural concepts, have an overall similarity structure. However, the dimensional summation hypothesis (Milton & Wills, 2004) predicts this difficulty. It also makes a number of other predictions about polymorphous concept formation, which are tested here. In Experiment 1 we confirm the theory’s prediction that polymorphous concept formation should be facilitated by deterministic pretraining on the constituent features of the stimulus. This facilitation is relative to an equivalent amount of training on the polymorphous concept itself. In Experiments 2–4, the dimensional summation account of this single feature pretraining effect is contrasted with some other accounts, including a more general strategic account (Experiment 2), seriality of training and stimulus decomposition accounts (Experiment 3), and the role of errors (Experiment 4). The dimensional summation hypothesis provides the best account of these data. In Experiment 5, a further prediction is confirmed — the single feature pretraining effect is eliminated by a concurrent counting task. The current experiments suggest the hypothesis that natural concepts might be acquired by the deliberate serial summation of evidence. This idea has testable implications for classroom learning.Biotechnology and Biological Sciences Research Council (BBSRC

    Understanding complexity in the HIF signaling pathway using systems biology and mathematical modeling

    Get PDF
    Hypoxia is a common micro-environmental stress which is experienced by cells during a range of physiologic and pathophysiologic processes. The identification of the hypoxia-inducible factor (HIF) as the master regulator of the transcriptional response to hypoxia transformed our understanding of the mechanism underpinning the hypoxic response at the molecular level and identified HIF as a potentially important new therapeutic target. It has recently become clear that multiple levels of regulatory control exert influence on the HIF pathway giving the response a complex and dynamic activity profile. These include positive and negative feedback loops within the HIF pathway as well as multiple levels of crosstalk with other signaling pathways. The emerging model reflects a multi-level regulatory network that affects multiple aspects of the physiologic response to hypoxia including proliferation, apoptosis, and differentiation. Understanding the interplay between the molecular mechanisms involved in the dynamic regulation of the HIF pathway at a systems level is critically important in defining new appropriate therapeutic targets for human diseases including ischemia, cancer, and chronic inflammation. Here, we review our current knowledge of the regulatory circuits which exert influence over the HIF response and give examples of in silico model-based predictions of the dynamic behaviour of this system
    corecore