3,071 research outputs found

    On the origin of \gamma-ray emission in \eta\ Carina

    Full text link
    \eta\ Car is the only colliding-wind binary for which high-energy \gamma\ rays are detected. Although the physical conditions in the shock region change on timescales of hours to days, the variability seen at GeV energies is weak and on significantly longer timescales. The \gamma-ray spectrum exhibits two features that can be interpreted as emission from the shocks on either side of the contact discontinuity. Here we report on the first time-dependent modelling of the non-thermal emission in \eta\ Car. We find that emission from primary electrons is likely not responsible for the \gamma-ray emission, but accelerated protons interacting with the dense wind material can explain the observations. In our model, efficient acceleration is required at both shocks, with the primary side acting as a hadron calorimeter, whilst on the companion side acceleration is limited by the flow time out of the system, resulting in changing acceleration conditions. The system therefore represents a unique laboratory for the exploration of hadronic particle acceleration in non-relativistic shocks.Comment: 5 pages, 4 figures, 1 table, accepted for publication in MNRAS Letter

    Potential Neutrino Signals from Galactic Gamma-Ray Sources

    Full text link
    The recent progress made in Galactic gamma-ray astronomy using the High Energy Stereoskopic System (H.E.S.S.) instrument provides for the first time a population of Galactic TeV gamma-rays, and hence potential neutrino sources, for which the neutrino flux can be estimated. Using the energy spectra and source morphologies measured by H.E.S.S., together with new parameterisations of pion production and decay in hadronic interactions, we estimate the signal and background rates expected for these sources in a first-generation water Cherenkov detector (ANTARES) and a next-generation neutrino telescope in the Mediterranean Sea, KM3NeT, with an instrumented volume of 1 km^3. We find that the brightest gamma-ray sources produce neutrino rates above 1 TeV, comparable to the background from atmospheric neutrinos. The expected event rates of the brightest sources in the ANTARES detector make a detection unlikely. However, for a 1 km^3 KM3NeT detector, event rates of a few neutrinos per year from these sources are expected, and the detection of individual sources seems possible. Although generally these estimates should be taken as flux upper limits, we discuss the conditions and type of gamma-ray sources for which the neutrino flux predictions can be considered robust.Comment: 20 pages, 4 figures; v2: ERROR in energy scale of KM3NeT effective neutrino area corrected which resulted in event rates being about a factor 3 too low; v3: grammatical changes and update of references after receiving proof

    Development of a high-altitude airborne dial system: The Lidar Atmospheric Sensing Experiment (LASE)

    Get PDF
    The ability of a Differential Absorption Lidar (DIAL) system to measure vertical profiles of H2O in the lower atmosphere was demonstrated both in ground-based and airborne experiments. In these experiments, tunable lasers were used that required real-time experimenter control to locate and lock onto the atmospheric H2O absorption line for the DIAL measurements. The Lidar Atmospheric Sensing Experiment (LASE) is the first step in a long-range effort to develop and demonstrate an autonomous DIAL system for airborne and spaceborne flight experiments. The LASE instrument is being developed to measure H2O, aerosol, and cloud profiles from a high-altitude ER-2 (extended range U-2) aircraft. The science of the LASE program, the LASE system design, and the expected measurement capability of the system are discussed

    Anomalous Noise in the Pseudogap Regime of YBa2_2Cu3_3O7δ_{7-\delta}

    Get PDF
    An unusual noise component is found near and below about 250 K in the normal state of underdoped YBCO and Ca-YBCO films. This noise regime, unlike the more typical noise above 250 K, has features expected for a symmetry-breaking collective electronic state. These include large individual fluctuators, a magnetic sensitivity, and aging effects. A possible interpretation in terms of fluctuating charge nematic order is presented.Comment: 4 pages, 4 figure

    Evidence for shape coexistence in 98^{98}Mo

    Full text link
    A γγ\gamma\gamma angular correlation experiment has been performed to investigate the low-energy states of the nucleus 98^{98}Mo. The new data, including spin assignments, multipole mixing ratios and lifetimes reveal evidence for shape coexistence and mixing in 98^{98}Mo, arising from a proton intruder configuration. This result is reproduced by a theoretical calculation within the proton-neutron interacting boson model with configuration mixing, based on microscopic energy density functional theory. The microscopic calculation indicates the importance of the proton particle-hole excitation across the Z=40 sub-shell closure and the subsequent mixing between spherical vibrational and the γ\gamma-soft equilibrium shapes in 98^{98}Mo.Comment: 6 pages, 5 figures, 3 tables; published in Phys. Rev.

    A Template-based gamma-ray Reconstruction Method for Air Shower Arrays

    Get PDF
    We introduce a new Monte Carlo template-based reconstruction method for air shower arrays, with a focus on shower core and energy reconstruction of γ\gamma-ray induced air showers. The algorithm fits an observed lateral amplitude distribution of an extensive air shower against an expected probability distribution using a likelihood approach. A full Monte Carlo air shower simulation in combination with the detector simulation is used to generate the expected probability distributions. The goodness of fit can be used to discriminate between γ\gamma-ray and hadron induced air showers. As an example, we apply this method to the High Altitude Water Cherenkov γ\gamma-ray Observatory and its recently installed high-energy upgrade. The performance of this method and the applicability to air shower arrays with mixed detector types makes it a promising reconstruction approach for current and future instruments

    TransNets: Learning to Transform for Recommendation

    Full text link
    Recently, deep learning methods have been shown to improve the performance of recommender systems over traditional methods, especially when review text is available. For example, a recent model, DeepCoNN, uses neural nets to learn one latent representation for the text of all reviews written by a target user, and a second latent representation for the text of all reviews for a target item, and then combines these latent representations to obtain state-of-the-art performance on recommendation tasks. We show that (unsurprisingly) much of the predictive value of review text comes from reviews of the target user for the target item. We then introduce a way in which this information can be used in recommendation, even when the target user's review for the target item is not available. Our model, called TransNets, extends the DeepCoNN model by introducing an additional latent layer representing the target user-target item pair. We then regularize this layer, at training time, to be similar to another latent representation of the target user's review of the target item. We show that TransNets and extensions of it improve substantially over the previous state-of-the-art.Comment: Accepted for publication in the 11th ACM Conference on Recommender Systems (RecSys 2017

    Random Dirac operators with time-reversal symmetry

    Get PDF
    Quasi-one-dimensional stochastic Dirac operators with an odd number of channels, time reversal symmetry but otherwise efficiently coupled randomness are shown to have one conducting channel and absolutely continuous spectrum of multiplicity two. This follows by adapting the criteria of Guivarch-Raugi and Goldsheid-Margulis to the analysis of random products of matrices in the group SO(2L)^*(2L), and then a version of Kotani theory for these operators. Absence of singular spectrum can be shown by adapting an argument of Jaksic-Last if the potential contains random Dirac peaks with absolutely continuous distribution.Comment: parts of introduction made more precise, corrections as follow-up on referee report

    Windshear Database for Forward-Looking Systems Certification

    Get PDF
    This document contains a description of a comprehensive database that is to be used for certification testing of airborne forward-look windshear detection systems. The database was developed by NASA Langley Research Center, at the request of the Federal Aviation Administration (FAA), to support the industry initiative to certify and produce forward-look windshear detection equipment. The database contains high resolution, three dimensional fields for meteorological variables that may be sensed by forward-looking systems. The database is made up of seven case studies which have been generated by the Terminal Area Simulation System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena. The selected cases represent a wide spectrum of windshear events. General descriptions and figures from each of the case studies are included, as well as equations for F-factor, radar-reflectivity factor, and rainfall rate. The document also describes scenarios and paths through the data sets, jointly developed by NASA and the FAA, to meet FAA certification testing objectives. Instructions for reading and verifying the data from tape are included

    Long-Term Neurobehavioral and Quality of Life Outcomes of Critically Ill Children after Glycemic Control

    Get PDF
    © 2019 Elsevier Inc. Objectives: To investigate adaptive skills, behavior, and quality health-related quality of life in children from 32 centers enrolling in the Heart And Lung Failure-Pediatric INsulin Titration randomized controlled trial. Study design: This prospective longitudinal cohort study compared the effect of 2 tight glycemic control ranges (lower target, 80-100 mg/dL vs higher target, 150-180 mg/dL) 1-year neurobehavioral and health-related quality of life outcomes. Subjects had confirmed hyperglycemia and cardiac and/or respiratory failure. Patients aged 2-16 years old enrolled between April 2012 and September 2016 were studied at 1 year after intensive care discharge. The primary outcome, adaptive skills, was assessed using the Vineland Adaptive Behavior Scale. Behavior and health-related quality of life outcomes were assessed as secondary outcomes using the Pediatric Quality of Life and Child Behavior Checklist at baseline and 1-year follow-up. Group differences were evaluated using regression models adjusting for age category, baseline overall performance, and risk of mortality. Results: Of 369 eligible children, 358 survived after hospital discharge and 214 (60%) completed follow-up. One-year Vineland Adaptive Behavior Scale-II composite scores were not different (mean ± SD, 79.9 ± 25.5 vs 79.4 ± 26.9, lower vs higher target; P =.20). Improvement in Pediatric Quality of Life total health from baseline was greater in the higher target group (adjusted mean difference, 8.2; 95% CI, 1.1-15.3; P =.02). Conclusions: One-year adaptive behavior in critically ill children with lower vs higher target glycemic control did not differ. The higher target group demonstrated improvement from baseline in overall health. This study affirms the lack of benefit of lower glucose targeting. Trial registration: ClinicalTrials.gov: NCT01565941
    corecore