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Abstract

This document contains a description of a comprehensive database that is to be used for

certification testing of airborne forward-look windshear detection systems. The database was

developed by NASA Langley Research Center, at the request of the Federal Aviation

Administration (FAA), to support the industry initiative to certify and produce forward-look

windshear detection equipment. The database contains high-resolution, three-dimensional fields

for meteorological variables that may be sensed by forward-looking systems. The database is

made up of seven case studies, which have been generated by the Terminal Area Simulation

System, a state-of-the-art numerical system for the realistic modeling of windshear phenomena.

The selected cases represent a wide spectrum of windshear events. General descriptions and

figures from each of the case studies are included, as well as equations for F-Factor, radar-

reflectivity factor, and rainfall rate. The document also describes scenarios and paths through

the data sets, jointly developed by NASA and the FAA, to meet FAA certification testing

objectives. Instructions for reading and verifying the data from tap,: are included.
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Conversion Table

Conversion factors for metric (SI) to customary U.S. units

To Convert

cubic meter (m 3)

gram (g)

kilometer (kin)

kilometer (km)

meter (m)

meters per second (m/s)

meters per second (m/s)

meters per second (m/s)

millibar (rob)

millibar (rob)

millimeters per hour (mm/hr)

pascal (Pa)

pascal (Pa)

Multiply by To Get

35.31

0.035274

0.62137

0.5396

3.2808

196.8

1.9426

2.237

9.869232 10 -4

0.02953

0.03937

0.01

1

cubic feet (cu ft)

ounces (oz)

statute miles

nautical miles

feet (ft)

feet per minute (ft/min)

knots

miles per hour (mph)

atmospheres (arm)

inches of mercury

inches per hour (in/hr)

millibar (mb)

newton per sq meter (N m -2)

iv



bow echo:

graupel:

FBAR:

hazardous windshear:

LLWAS:

macroburst:

mlcroburst"

performance-
decreasing winds:

stable layer:

TDWR:

thunderstorm

gust front:

Glossary

Rapidly-moving, crescent-shaped radar echo that is convex
in the direction of motion. Typically associated with strong,

straight winds.

Small soft hail or snow pellets.

An average of the wind shear hazard index (F-factor) taken

over a flight path segment of a specified distance (1 km in
this document).

Region of performance-decreasing winds with a 1-km
averaged F-factor exceeding 0.105.

Low Level Wind Shear Alert System -- An array of
anemometers located within the airport area; designed to

detect windshear on and near airport runways.

Region of divergent outflow from storm downdraft(s) that
has a horizontal scale greater than 4 km.

Region of divergent windshear that has a horizontal wind
change of at least 10 m/s within a 4-km segment.

Windshear that causes a loss of aircraft performance.

A vertical thickness of air with static stability: a parcel

displaced vertically within such a layer is subjected to a
buoyant force opposite to its displacement.

Terminal Doppler Weather Radar -- a ground-based Doppler
radar designed to detect microburst and gust front
windshear along airport approach and departure paths and

provide warnings to Air Traffic Control personnel

The transition zone at the leading edge of strong outflow
from thunderstorm downdrafts. Often referred to as "gust

front."
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1.0 Introduction

1.1 Purpose

This document describes the windshear database developed for the certification

testing of airborne forward-looking windshear detection systems. This database was
developed by NASA Langley Research Center at the request of the Federal Aviation
Administration (FAA) to support the industry initiative to certify and produce practical
windshear detection equipment. The database will be used with vendor-developed
sensor simulation software and vendor-collected ground clutter data to demonstrate

detection performance in a variety of meteorological conditions. The database is
generated by the Terminal Area Simulation System (TASS) -- a sophisticated, state-of-
the-art, meteorological cloud model -- which outputs fields for meteorological variables

that may be sensed by a forward-look windshear system or that may affect the

performance of such a system. The fields are described in detail below and include
wind, temperature, radar-reflectivity factor, water vapor, rain, and hail. The database
contains a number of windshear cases that encompasses a wide range of events,

suitable for testing and certification of windshear detection instrumentation. Description

of the specific paths to be used to test and certify windshear detection systems are
contained to insure that such systems are adequately tested. These paths represent
the intent of the FAA as of this writing. Subsequent FAA certification documentation

may modify the path descriptions and will take precedent over the paths described
here. Also included are instructions to read the database from tape and verify the

database.

1.2 Overview of Documentation

The TASS model is described in Section 1.3. Chapter 2 describes the data sets

in detail, covering such characteristics as: variables, grid spacing, domain size and
dimensions, initial conditions, and general meteorological descriptions of each case.

Descriptions of the certification paths to be used with each data set are found in

Chapter 3. Chapter 4 contains descriptions of the plots of key variables and derived
values which are included in this report as Appendix A. Appendix A also contains

Skew-T diagrams of the input soundings used to generate the database, and appendix
B contains a brief explanation of Skew-T diagrams. Chapter 5 details the instructions

for reading and verifying the database tapes. Appendix C shows the aircraft hazard
factor or F-factor equations used in this document. Appendix D contains the

supplementary equations for radar reflectivity factor, rainfall rate, and temperature
conversion. Appendix E is a listing of a sample FORTRAN code to read and verify the

database, and appendix F is the output of the code in appendix E.

1.3 Description of TASS Model

TASS, also known as the NASA Windshear Model, is a multi-dimensional

numerical cloud model developed at NASA Langley Research Center for the general

purpose of studying convective phenomena such as microbursts, convective rain



storms, gust fronts, and hailstorms (e.g., Proctor 1987a, 1987b). TASS implements a
numerical solution of a 3-dimensional time-dependent equation set for compressible

nonhydrostatic fluids. Prognostic equations are incorporated for the following 11
variables: the 3 velocity components, pressure, potential temperature, water vapor,

liquid cloud droplets, cloud ice crystals, rain, snow, and hail/graupel. Subgrid
turbulence closure is achieved using first-order diagnostic approximation with

Richardson number dependency. The surface friction layer is parameterized using
Monin-Obukhov similarity theory. Lateral boundaries are open and utilize radiation

boundary conditions so as to minimize wave reflection. The treatment of the water
substances (water vapor, liquid cloud droplets, cloud ice crystals, rain, snow and
hail/graupel) allows for condensation, evaporation, freezing, and sublimation, including
subsequent latent heat exchanges. Parameterizations for the numerous cloud
microphysical interactions are similar to those in Lin et al. (1983), and are listed in
Table 1.1.

TASS utilizes an efficient yet highly-accurate numerical solution of the time-

dependent equation set. The governing equations are approximated on a staggered
three-dimensional grid, the vertical spacing of which may be either linear or stretched.
The model domain may translate along with the movement of a microburst or
convective storm, even at variable speeds.

Given an initial atmospheric sounding (vertical profile of ambient temperature,

dewpoint, and wind velocity) and an initial triggering impulse, TASS can numerically-
simulate the time-dependent life-cycle of a convective storm, including any subsequent
microburst(s) that may develop (e.g., Proctor and Bowles 1992). Alternatively, the
model may directly simulate the evolution of a microburst by prescribing a precipitation
distribution at the model top boundary (e.g. Proctor 1988, 1989). For representative
ambient conditions that are supplied as input, TASS has produced simulations of real-
world events that are of reasonable comparison with observations.

The evolution of numerous windshear events have been simulated with TASS,

and include both "wet" and "dry" microburst events. As defined by Fujita (1985), a "dry"

microburst produces less than 0.01 inches of precipitation at the ground during the
event (note however, that all microbursts are associated with precipitation, although in
some cases very little or none may reach the ground); greater precipitation than this
defines a "wet" microburst. Radar meteorologists prefer the terms "low-reflectivity,"
"moderate-reflectivity," and "high-reflectivity" microburst. These terms are defined by
the associated radar-reflectivity factor being less than 35 dBZ, 35-55 dBZ, or greater
than 55 dBZ, respectively (e.g., Roberts and Wilson 1989). "Low-reflectivity microburst"

is synonymously used for "dry microburst", and vice versa.
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Table 1.1 Cloud Microphysical Interactions

Accretion of cloud droplets by rain

Condensation of water vapor into cloud droplets

Berry-Reinhardt formulation for autoconversion of cloud droplet
water into rain

Evaporation of rain and cloud droplets

Spontaneous freezing of supercooled cloud droplets and rain

Initiation of cloud ice crystals

Ice crystal and snow growth due to riming

Vapor deposition and sublimation of hail/graupel, snow, and cloud
ice crystals

Accretion by hail/graupel of cloud droplets, cloud ice crystals, rain,
and snow

Contact freezing of supercooled rain resulting from collisions with
cloud ice crystals or snow

Production of hail/graupel from snow riming

Melting of cloud ice crystals, snow, and hail/graupel

Shedding of unfrozen water during hail wet growth

Shedding of water from melting hail/graupel and snow

Conversion of cloud ice crystals into snow

Accretion by snow of cloud droplets, cloud ice crystals, and rain

Evaporation or vapor condensation on melting hail/graupel and snow
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2.0 Database Description

In order to provide a wide range of scenarios for the testing of look-ahead sensors, the
database is divided Into nine subsets from seven TASS case-study simulations. The
windshear types represented include microburst types ranging from: 1) small- to large-scale
events, 2) low- to high-reflectivity events, 3) symmetrical to asymmetrical events, and 4) weak
to hazardous windshear. The database also includes scenarios with: 1) growing and decaying
events, 2) interacting microbursts, 3) windshear with intervening rain, 4) microburst
penetrating a ground based stable layer, and 5) a gust front with hazardous shear. Several of
the numerically-modelled events in this database represent real accident or incident windshear
cases.

Table 2.1 summarizes each of the 7 cases utilized in generating the 9 certification
data sets. Each data set contains data for the appropriate variables in three-

dimensional space, but frozen in time. Two of these cases, Case 3 (Denver 7/11/88)
and Case 5 (Denver 718189), have data sets taken from two different times of the storm
evolution.

2.1 Variables

Table 2.2 lists each of the meteorological variables that are available in the

database. This selection of variables represents those that may be sensed by a
forward-look windshear system or that may affect the performance of such a system.
Each variable is represented by an array of data in three-dimensional space. In some
cases, hailwater and cloud droplet water did not occur anywhere within the domain of

the data set; hence, the fields for hailwater and cloud droplet water are given only for
those data sets in which either were present below 2 km above ground level (AGL).

Fields of radar-reflectivity factor, RRF, are diagnosed from the model

precipitation fields and are included in each data set. An additional field, RRFI,
approximates the contribution of radar-reflectivity factor from insects as well as
precipitation, and is included in cases 5-7. Not unexpectedly, the difference of values
between the RRF and RRFI fields is very small, except in the precipitation free areas
where insects solely contribute to the radar reflectivity. The maximum difference in

magnitudes between the RRF and RRFI fields are usually small and are less than a few
dBZ.
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Table 2.2. List of Variables Contained in Certification Database

Variable Description Units Not Included

in Cases

U Eastward Component meters per second
of Wind Velocity

V Northward Component
of Wind Velocity

meters per second

W Vertical Component of

Wind Velocity
meters per second

TAU Temperature degrees Kelvin

RRF Radar-Reflectivity decibels of Z

Factor (dBZ)

XlV Water Vapor grams per cubic meter

RAIN Rainwater Content grams per cubic meter

HAIL Hailwater Content grams per cubic meter 2, 4, and 5

CLD Liquid Cloud-Droplet grams per cubic meter 1-6
Water

RRFI Radar Reflectivity dBZ 1-4

Including Insects
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2.2 Generation of Certification Database

The certification data sets are processed from several archived raw data files for
selected cases and simulation times. The data sets were generated from TASS case
simulations conducted over the past several years, and contain a number of fields with

data points located on a spatially-staggered mesh. Also, the domain and grid sizes in
the raw data sets vary between cases. To make them suitable for inclusion in the
windshear certification database, the data is interpolated to a common grid spacing,
details of which are discussed below. The data contained in the database is reduced

by windowing (extracting) only the lower 2 km of the simulation, and by excluding any
unnecessary fields. The specifications for the original TASS data sets are listed in
Table 2.3.

2.2.1 Grid Spacing of Original and Final Data Sets

In order to achieve a user-friendly database for certification purposes, the data is

translated to a 3-dimensional grid of uniform spacing. The cell resolution chosen to
retain the salient details of each event is 100 by 100 meters horizontally and 50 meters

vertically. Exceptions are for cases 1 and 4 which are interpolated with a resolution of
50 meters in all three directions. These two cases require smaller grid sizes in order to
maintain the identity of the small-scale features.

As noted in Table 2.3 the vertical extent of each raw data set is significantly

higher than what is needed to simulate the scenarios associated with landing approach
and takeoff. The database is limited to 2 km AGL in order to reduce size, but yet retain

ample data for adequate certification testing. The vertical limitation of the database is
more than sufficient to resolve the surface outflow of all the simulated microburst

events.

The horizontal-domain size of each case is the same for the original and final
data. The exception is for case 7 where the gust front domain is clipped by 6 km to
reduce database size. The details of the interpolated database are given in Table 2.4.

2.2.2 Interpolation

The interpolation strategy is chosen to preserve the 1-km averaged F-Factor, or
FBAR (explained in appendix C). The interpolation strategy results in losses of 2 to 10
percent of FBAR. There are two different interpolation processes depending on
whether the original data set is 2-D axisymmetric or 3-D.

For the 3-D case simulations, interpolation from the TASS model spacing to a

uniform grid spacing was accomplished using calls to routines in the IMSL Math/Library
(1989). The data translation consisted of a 2-step process, in which a 2-D horizontal
interpolation was followed by a 1-D vertical interpolation. The 2-D interpolation was

accomplished by the subroutine "QD2VL" which is quadratic in 2-space, and the 1-D

7



vertical interpolation was by way of the routine "CSINT" which is a cubic spline
algorithm.

In the 2-D axisymmetric simulations (cases 1 and 4) the data is symmetric with
regard to the vertical axis of an isolated microburst, and was transformed from a
cylindrical to a cartesian coordinate system. In a two step procedure, data was first
interpolated based on weighted averages in the 2-D axisymmetric plane. Data was

then mapped into a 3-D cartesian grid by rotating the interpolated radial-vertical plane
around the axis of the microburst. Data at grid points outside of the cylindrical sweep of
the radial-vertical plane were set equal to that along the edge of the sweep.

8
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Table 2.4 Domain Information for Interpolated Windshear Database

Data
Set

Name

Case 1
11 min

Case 2
37 min

Case 3
49 rain

Case 3
51 min

Case 4
36 min

Case 5
40 min

Case 5
45 min

Case 6
14 min

Case 7
27 min

Origin (m)
Xo, Yo

-4000 -4000

-8834 -8880

1190 -10500

2232 -10570

-5000 -5000

-4210 2275

-3738 3639

8071 -3500

18510 -1500

Grid Cell Size (m)
AX x AY x hz

50 x 50 x 50

100 x 100 x 50

100 x 100 x 50

100 x 100 x 50

50 x 50 x 50

100 x 100 x 50

100 x 100 x 50

100 x 100 x 50

100 x 100 x 50

DomainSize(km)
XxYxZ

8x8x2

15x15x2

18x12x2

18x 12x2

10x 10x2

16x 16x2

16x 16x2

10x10x2

14x5x2

Number of Grid
Points

IX x IY x IZ

161 x 161 x 41

151 x 151 x41

181 x 121 x 41

181 x 121 x 41

201 x 201 x 41

161 x 161 x 41

161 x 161 x 41

101 x 101 x 41

141 x 51 x 41
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2.3 General Meteorological Description of Each Case

Below is a condensed summary for each case. Soundings for each of the cases,

along with figures produced from the interpolated database, are included in appendix A.
Further descriptions for each of the simulations, including comparison and validation
with observed data, may be found in the references listed in Table 2.3. [Cases 6 and 7
were generated recently (primarily for this database) and no documentation currently
exists other than below.]

2.3.1 Case 1: DFW Microburst

The 2 August 1985, Dallas-Ft. Worth (DFW) microburst was a high-reflectivity
microburst that resulted in the crash of a commercial jetliner. This event is simulated
with the 2-D axisymmetric TASS model by assuming an environmental sounding
interpolated from observed data.

The simulated microburst is associated with high reflectivity due to rain and hail,
moderate rainfall rates, pronounced temperature drop, and hazardous wind shear with

strong outflow winds. The data set is taken near the time of peak intensity, at 11
minutes simulation time. Although the numerical simulation is 2-D, there is reasonable

comparison with observed data taken from aircraft flight data recorders. Other details
of this simulation, including comparisons with the airplane flight profiles, are in Proctor

(1988).

2.3.2 Case 2: Orlando Microburst

The 20 June 1991, Orlando microburst, was encountered by a NASA aircraft
instrumented with in-situ and forward-look windshear sensors, and was also measured

within the Terminal Doppler Weather Radar (TDWR) test bed. The parent storm and
ensuing microbursts are simulated with 3-D TASS. Comparisons of the simulation with
observed data indicate a reasonable agreement.

The simulation, as verified from measurements, indicates a high-reflectivity
microburst with hazardous shear and heavy rainfall rates. Although the area covered
by the outflow is roughly symmetrical, complex regions of windshear hazard are
embedded within the outflow. The data set is taken at a simulation time of 37 minutes,

when the microburst is near peak intensity. This time corresponds to observed
measurements 1 at approximately 2046 Universal Coordinated Time (UTC). The
microburst contains multiple downdraft cores and regions of upflow embedded within
the outflow. The strongest hazard is located near the southern end of the outflow and
has a peak FBAR of about 0.19. An approach from the north would encounter

intervening rain, as well as pockets of both performance increase and decrease, before

1Measuremenls from TDWR and NASA's aircraft penetration.
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entering the area of primary hazard. The outflow near ground level is associated with a

pronounced temperature change, with the maximum drop being about 6° C.

2.3.3 Case 3: Denver Multiple Microburst Event

The 11 July 1988, Denver, storm is simulated by initializing 3-D TASS with the

2000 UTC observed special sounding. This storm is of special interest, since it

produced a severe low- to moderate-reflectivity microburst of unusual intensity that was
inadvertently encountered by 4 commercial jetUners trying to land at Denver Stapleton.

An in-depth study of this incident, including comparisons with TDWR, surface
measurements, and flight data recorder (from the four aircraft) data are presented in

Proctor and Bowles (1992), and Schlickenmaier (1989). Very good agreement with
observed measurements was obtained.

Model results show that multiple microbursts (with FBAR of up to 0.2) formed
downstream of the main precipitation shaft, which itself was characterized by a weak

microburst. The microbursts (all produced by one storm) grow and interact, eventually

coalescing into a large macroburst outflow. Some of the microbursts display large

asymmetry. The most eastern of these microbursts is the one that was encountered by
the 4 aircraft.

Data sets are given at two simulation times: 49 and 51 min. The first is near the

time of initial ground contact for the downstream eastern microburst. Several minutes

latter it grows into a hazardous microburst, which is captured in the second data set. At
51 minutes, the eastern microburst is near peak intensity. It is near this time that the

first two encounters takes place. Low-level outflow from this microburst has peak AV

(velocity change) of up to 40 m/s. The most westward microburst, which is associated
with the storms primary rainshaft, remains weak although associated with moderate
values of radar reflectivity. Temperature drops in the microburst outflows are only a few

degrees C.

2.3.4 Case 4: Denver Warm Microburst

Data for this case is from a 2-D axisymmetric simulation of a narrow, Iow-

reflectivity, microburst occurring in an environment characterized by a low-level stable
layer. This simulation does not attempt to model a particular observed event, but uses
an input sounding (14 July 1982) measured during the Joint Airport Weather Studies

(JAWS). The temperature profile from the sounding has been modified for an
isothermal temperature profile between the ground and 500 m, resulting in a ground-

based stable layer.

Relative to the size and intensity of other microbursts, this event contains a

strong narrow-core downdraft, shallow outflow, and very large FBAR. However, the

region occupied by the hazardous shear is small in horizontal scale compared to most
other events. This simulated microburst also is characterized by warm outflow (positive

temperature change from ambient). The time-freeze used for this case is when the

12



microburst is in a quasi-steady state, at 36 minutes, some 13 minutes _fter peak
intensity. Similar microburst that were characterized by down,._;_d-_,,_otruding,
stalactite-appearing radar echoes were observed during JAWS (see Fujita and
Wakimoto 1983). Numerous warm microburst were measured by ground-based
instruments during JAWS (Bedard and LeFebvre 1988).

2.3.5 Case 5: Denver Dry Microburst

On 8 July 1989, a very strong microburst was detected by LLWAS, "_,rithin the
approach corridor just north of Denver Stapleton Airport. The mk:;_'ob_Jrst was
encountered by a Boeing 737-200 in a "go around" configuration and was r_ported to
have lost considerable air speed and altitude during penetration (Wilson eta',. 1991;

Hughes 1990). LLWAS data revealed a pulsating microburst with peak strength
associated with the first pulse. Interviews indicated that the microburst was

accompanied by no apparent visible clues such as rain or virga, although blowing dust
was reported. A National Center for Atmospheric Research (NCAR) research Dopplel"
radar was operating, although poorly sited for low-level wind shear detection at

Stapleton. Meaningful velocity could not be measured at the lowest radar scan due to
very low reflectivity factor. This case attracts special interest since it may represent a
dangerous microbu_st that is difficult to detect with Doppler radar.

The life-cycle of the microburst-producing storm is simulated with the 3-D version
of TASS. Environmental conditions are taken from a sounding observed near the time
and location of the event. Results from the numerical simulation show a Iow-reflectivity
microburst with three distinguishable pulses. Data sets are generated from the
simulation at two times: i) at 40 minutes, which is near peak intensity; and ii) 5 minutes
later, which is near the time of the second microburst pulse. The first and strongest

pulse (at 40 minutes) is associated with a peak velocity differential (AV)of 37 m/s and a
peak horizontal wind speed of 26 m/s. At this time, radar reflectivity in most of the
microburst outflow is less than -5 dBZ, and reflectivity exceeding 10 df3Z is confined to
a 1-2 km diam,a_ar area within the core of the microburst. By the iime of the second

pulse (45 minutes), there is even less precipitation at low levels, yet hazardous levels of
wind shear are maintained. The outflow from the first pulse has expanded into a
macroburst and grown more asymmetric with time. The microburst associated with the

second pulse is embedded within this larger scale outflow. The temperature change
between the environment and outflow remain small at all times, never more than 2.5oc.

2.3.6 Case 6: Highly-Asymmetric Florida Microburst

A translating microburst with highly-asymmetric outflow is simulated with _.ae3-D

model, by allowing an isolated precipitation shaft to fall through a prescribed ambient
wind with vertical shear. The same ambient temperature and humirJity profile from
Case 2 is used in this simulation. The model simulation produces a wet microburst,

with a bow-shaped radar-reflectivity pattern. Strong horizontal wind_ are generated
along the leading edge of the translating outflow. The microburst contains high values
of radar reflectivity, large rainfall rates and a pronounced temperature drop. The data

13



of radar reflectivity, large rainfall rates and a pronounced temperature drop. The data
set chosen for certification testing is at 14 minutes, within the period of decaying

intensity. Hazardous windshear exists, but is located in a very small region. The
diameter of the hazardous shear is about 1 km with a peak FBAR of about 0.16. Other

regions of performance decreasing F-factor exist within the asymmetric outflow, but
generally contain weak values. Movement of the microburst is to the east at 17.5 m/s.

2.3.7 Case 7: Montana Gust Front

Thunderstorm gust fronts are characterized by a region of performance-

increasing shear and turbulence, but usually pose little hazard due to performance
decreasing shear. Surges and secondary discontinuities within the outflow behind gust
fronts have been observed (Golf 1976), and may be associated with hazardous
windshear. The case described below is selected because it has both a strong gust

front (with performance-increasing shear) and a "discontinuity" in the outflow
associated with hazardous windshear.

A gust front is simulated with 3-D TASS using the 2 August 1981, Knowlton
special sounding with modified 2 winds. For this case the model assumes periodic
north/south boundaries, and a gust front is generated from a north-south oriented line

of precipitation.

At the simulation time chosen for this data set, the gust front is well developed

and is translating toward the east at about 21 m/s. The gust front is characterized by
strong performance-increasing shear (negative F-factor), pronounced temperature
change, very-low radar reflectivity, and upward motion. A region of hazardous
windshear is located within the outflow some distance behind the gust front. It is
associated with a horizontal roll-vortex that is located at the edge of the precipitation
shaft.

2The observedambientwindsare rotated270° (a windblowingtowardthe southis nowblowing
towardthe east) and the nownorth-southcomponentis set to zero. This is doneto allowthe simulation
of a gustfrontwithina high-resolutionrectangulardomain.
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3.0 Certification Path Scenarios

3.1 Path Descriptions

The certification test paths through the simulation database have been carefully
chosen to encounter a range of windshear alert situations. Table 3.1 summarizes the

scenarios to be applied, and the certification path definitions are detailed in Table 3.2.

These paths are subject to change in subsequent FAA certification documents.

The following assumptions are used for these path definitions:

1. Glide slope angle = 3 ° (flight path angle = -0.0524 radians).

2. Runway length - 3 km.

3. Glide path intercept point = 300 meters down runway.

4. Middle marker is 900 meters from runway threshold.

5. The above conditions produce a glide path height of 63 meters at the middle
marker.

6. Go-around maneuvers are begun at an altitude of 30 meters, at a position 300

meters from runway threshold.

7. Takeoff ground roll length = 2 km.

8. Flight path angle after takeoff or go-around = 0.10 radians (5.73 ° ).

9. Radius of turn, 25 degrees bank, at 103 m/s (200 knots) = 2.32 kin.

10. The curved approaches are flown at a constant altitude of 1000 feet (305
meters) above ground level (AGL).

Paths are specified by direction of takeoff or approach, X or Y coordinate of flight

path, and runway threshold coordinates. The path direction is specified by either
compass direction or flight direction. North, East, South, West correspond to flight
direction or track 360, 90, 180, and 270, respectively. The coordinates are specified

with respect to the microburst data set and are in metric units. Microbursts are static
during each simulation run. Drift angle runs are accomplished by biasing the
orientation of the sensor, not through the presence of any ambient crosswind.

3.2 Hazards Along Path

In addition to specifying the details of each of the certification paths, Table 3.2
includes the values of peak FBAR and peak radar reflectivity along the path, as well as

comments noting path-specific hazard details.
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4.0 Plot Descriptions

Appendix A.1 contains vertical atmospheric sounding plots for each of the case
studies. [Ambient wind profiles are not used in the axisymmetric cases (cases 1 and
4), and therefore are not included in Figs. A.1.1 and A.1.4.] An explanation of how to
read the soundings is in appendix B.

Appendix A.2 contains contour plots of North-South and East-West FBAR

plotted at two elevations, 50 m and 300 m. The plots at 50 m show the F-factor field at
the lowest elevation above the ground, while the plots at 300 m display the fields near

the altitude at which detection sensors must activate. Many of the certification paths
encounter the peak shear near these altitudes. Contour plots for East-West FBAR are
shown for each case, and North-South FBAR for cases 2, 3, 5 and 6. The North-
South FBAR in cases 1 and 4 is not shown, but does not differ from the structure and

magnitude of the East-West FBAR because of axial symmetry. Definitions of East-
West and North-South FBAR are contained in appendix C.

Appendix A.3 contains contour plots of radar reflectivity factor plotted at 150
meters elevation for all cases. The radar reflectivity field is shown only at the one
altitude; however, variations between the ground and 300 m are usually small.

Two-dimensional wind-vector fields are displayed for all cases in appendix A.4.
Fields are given for both a horizontal and vertical cross section, with the horizontal slice
taken at 50 meters elevation. The location of the vertical cross section varies between
case to reflect the most hazardous plane of the flight scenarios.

Appendix A.5 contains the plots of parameters along specific flight path
scenarios. The parameters consist of FBAR, radar reflectivity, along-path wind speed,
and altitude. For the curved-approach scenarios the altitude is omitted since it is
constant at 304.8 meters (1000 ft).
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5.0 Instructions for Readlng Tape and Verifying Certification Database

The database is in alpha-numeric format on an 8mm Exabyte data cartridge (2.5

gigabyte capacity), and created by the UNIX utility tar. Each data set is a separate tar
volume on the tape.

The suggested tar extraction command is:

tar xv "tape device"

This will extract the files in their original name. The tape device must be a non-

rewinding tape drive4. Repeat the above command until all desired volumes are
extracted. In the last tar volume and in appendix E is a sample FORTRAN program
"datachk.f" to check the consistency of the database. Appendix F has the output from

this program for each data set. Table 5.1 gives the file names, size and description of
each of the tar volumes on the magnetic tape.

Table 5.1 Contents of 8mm Magnetic Tape

File Name

cl 11.faa.for
c2 37.faa.for

c3_49.faa.for

c3_51 .faa.for
c4 36.faa.for

c5 40.faa.for

_5_45.faa.for

(:=6_14.faa.for
c7 27.faa.for

datachk.f

Size

(bytes)

86,0841361

66_257_496

72p733_937

72,733,937

117_400r896

86,084t361

86,084_361

38,113,011

29,852r511
11,250

tar volume # Description

Case #1 at 11 minutes simulation time1

2 Case #2 at 37 minutes simulation time

3 Case #3 at 49 minutes simulation time

4 Case #3 at 51 minutes simulation time

5 Case #4 at 36 minutes simulation time

6 Case #5 at 40 minutes simulation time

7 Case #5 at 45 minutes simulation time

8 Case #6 at 14 minutes simulation time

9 Case #7 at 27 minutes simulation time

10 FORTRAN code to read and verify the
database

Access to the variables within each data set is accomplished by modifying the datachk.f

program. The necessary information to read the database is as follows:

The files are read by first reading the title header as follows (FORTRAN code):

read(1,1000) title
1000 format(a80)

4A non-rewindingtape drive is not physicallydillerenl trom a rewinding one. The difference is in
how the tape handler responds after a tape read. A rewindingtape always rewinds the tape after each
read. whereas the tape position is unaltered after a read on a non-rewinding tape. The user is to reter to
the specific environmental variable to access the tape drive as a non-rewindingdevice.
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and then each variable by using:

read(1,2000) var,ix,iy,iz,time,xstart,ystart,dxy,dz,
1 (((q(i,j,k),i=l ,ix),j=l ,iy),k-1 ,iz)

2000 format(a4,/,3i4J,5e12.4,/,(8e10.4))

The codes (4-character name in var) for the variables are explained in Table 2.2 and
are as follows:

"U " "V " "W " "TAU" "XIV "
"RRF" "RAIN" "HAIL" "RRFI" "CLD"

The variables ix,ly, and iz are the size of the 3-D data set and correspond to x, y, and z
directions, respectively. The variable time is simulation time in seconds, and xstart
and ystart are the locations of the minimum x and y values for the grid. The variable
dxy is the horizontal spacing, and dz is the vertical spacing. Figure 5.1 shows the
relationship among computational and physical dimensions. For a given i, j, and k
location the physical position is:

X(i) = xstart + (i-1)'dxy
Y(j) = ystart + (j-1)*dxy
Z(k) = (k-1)*dz

height above ground, Z, k

-1 _ North, Y, j

It_ "_ __ _ "_ > E,=Xi
_,;1 2 3_ =-2 Ix-1 = ''

,x = xstart I Y. ystart I Z=0

Figure 5.1 Relationship Among Computational and Physical Dimensions (note that
North is into the page).
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6.0 Concluding Remarks

The NASA Langley Research Center, at the request of the FAA, has developed
a database of hazardous windshear phenomena to support the certification of airborne

forward-look windshear detection and alerting systems. The database contains high-
resolution, three-dimensional fields for meteorological variables that may be sensed in
windshear environments by forward-looking systems. Six microburst case studies and

one gust front are provided. Also defined are the scenarios required to test forward-
look systems using the database and various takeoff and landing flight paths. The
database and scenarios represent a wide range of ambient meteorological conditions,
microburst reflectivity, size, intensity, intervening precipitation, and symmetry. The
scenarios provide cases for windshear detection during takeoff roll, initial climb,

straight-in approach, curved approaches, go-around maneuvers, and landings with
significant wind drift angles. This document has described the database formulation,
the ambient conditions and resultant windshear for each case study, the scenarios and

certification testing paths through the data sets, and instructions for reading the
database from magnetic tape.
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Appendix A. 1

Input Sounding Plotted on Skew T-log p Diagrams
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Figure A. 1.1 Skew-T diagram of atmospheric sounding for case #1 ; sounding interpolated from

data observed at Dallas, Ft. Worth, 3 August 1985, (_) UTC. [See appendix B for explanation of

Skew-T diagram.]
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Figure A. 1.2 Same as Fig. A. 1.1, but for case #2. Modified from special sounding observed at

Orlando, Florida based, 20 June 1991, 2035 UTC. Wind barbs are pointed along the compass

direction of the wind. Each full wind barb equals 5 m/s (10 knots).
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Figure A. 1.3 Same as Fig. A. 1.2, but for case #3. Special sounding observed at Denver, Colo-
rado, 11 July 1988, 2000 UTC, modified fi)r latest surface observations.
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14 July 1982 2000 UTC, but modified for a 5(X) m deep surface-ban isothermal layer.
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Appendix A.2

North-South and East-West FKm Contour Plots
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Figure A.2.1 Data Set #1-I1" East-West FKm at 3(10 meters elevation. The contour interval is

0.025. Contours with a negative value are dashed. Maximum value is about 0.20.
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Figure A.2.2 Data Set # I- 1l: East-West FKm at 50 meters elevation. Contours as in Figure A.2.1
with maximum value of about O. 15.
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Figure A.2.3 Data Set #2-37: North-South FKm at 3(10 meters elevation. Contours as in Figure

A.2.1 with maximum value of about O. 17.
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Figure A.2.4 Data Set #2-37: North-South FK,. at 50 meters elevation. Contours as in Figure

A.2.1 with maximum value of about O. 17.
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Figure A.2.5 Data Set #2-37: East-West FKm at 300 meters elevation. Contours as in Figure
A.2.1 with maximum value of about I).18.
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Figure A.2.6 Data Set #2-37: East-West FKm at 50 meters elevation. Contours as in Figure A.2.1
with maximum value of about O. 17.
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Figure A.2.7 Data Set #3-49: North-South FKm at 300 meters elevation. Contours as in Figure
A.2.1 with maximum value of about O. 19.
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Figure A.2.8 Data Set #3-49: North-South FK'n at 50 meters elevation. Contours as in Figure
A.2.1 with maximum value of about O. 13.
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Figure A.2.9 Data Set #3-49: East-West Fion at 30{) meters elevation. Contours as in Figure

A.2.1 with maximum value of about O. 17.
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Figure A.2.10 Data Set #3-49: East-West FK,n at 50 meters elevation. Contours as in Figure

A.2.1 with maximum value of about O. 11.
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Figure A.2.11 Data Set #3-51" North-South eKm at 300 meters elevation. Contours as in Figure

A.2.1 with maximum value of about 0.24.
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A.2.1 with maximum value of about 0.20.
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IE:W I Km Averaged F Factor ,at Z = ,50.e meters

I(,(o/ ..I? .

" " ' Ik/-4 - 'o i,,,,,,,
, /ttt_,llf t .t t_"/i'/ I IIII I'I ,lll[_\%lllll I111 I
I c'-'_)",_--))\";Z"Z //3 I _ I_ irl ,/lltlh\\-il I _uI .

>- ." -' , .t / z • - t_ ;I _ _,\'J,ill _Jl{tt_Jt2_ll/t"/.
r,3 l I \ \\ I ,,.'/L Y ) ( L\I , I_a ..:-:,,,_-..- _

-6 6 _ (_ ,,_ )),,,.,,,o LJ - "_" _o

-Ig 6

2.2 5.2 8.2 11 .2 14.2 17.2 20.2
X (KH)

Figure A.2.14 Data Set #3-51" East-West FKm at 50 meters elevation. Contours as in Figure
A.2.1 with maximum value of about 0.20.
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Case #4-36, 07/14/82 Denver - Temperature Inversion

- K Averaged F Factor at Z= 300 0 metersE W 1 m

5
K ' I ' I ' I ' I '

|
3 0 I- _...o-----o--.--o_

,;, "',

v

>--1 0 "_

-3 0 -

-5 0 II I 1 I i I i I ,

-5.0 -3.0 -1 .0 1 .0 3.0 5.0
X {KM)

Figure A.2.15 Dam Set _-36: East-West FKan at 300 meters elevation. Contours as in Figure
A.2.1 with maximum value of about 0.18.

Case "4-36, 07/14/82 Denver - Temperature Inversion

E-W 1 Km Averaged F Factor at Z = 50.0 meters

5.0 " , I ' I ' I ' 1 '

3.0

- 1.0
Iz
v

>- -I .0

-3.0

i I I I l I I I t

.0 -3.0 -I .0 I .0 3.0 5.0

X (KM)

Figure A.2.16 Data Set #4-36: East-West FKm at 50 meters elevation. Contours as in Figure
A.2.1 with maximum value of about 0.29.
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Case #5-40, DRY -

N-S 1 Km Averaged F Factor at Z = 300.0

1 8.3

14.3

_10.3

>..

6.3

Microburst NASA Derived

meters

2.3
-4.2 -0.2 3.8 7.8

X (KM)

1.8

Figure A.2.17 Data Set #5-40: North-South FKm at 300 meters elevation. Contours as in Figure
A.2.1 with maximum value of about 0.21.

Case _5-40, DRY - Microburst NASA Derived

N-S I Km Averaged F Factor at Z= 5e.0 meters

18.3

14.3

_E

"/103

>--

6.3

2.3
-4.2 -0.2 3.8 7.8 11 .8

X (KM)

Figure A.2.18 Data Set #5-40: North-South FK,n at 51) meters elevation. Contours as in Figure

A.2.1 with maximum value of about 0.18.
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CaEe :5-40, DRY
- 1 Km Averaged F F_,ctor at. Z= 300.0

1 8.3

14.3

_10.3

L

Microburst NASA Derived

meters

6'3" f ,__ j"_°-_° o o ___

2.3 ' J ' ' '
-4.2 -0.2 3.8 7.8 1

X (KM)
.8

Figure A.2.19 Data Set #5-40: East-West FKm at 300 meters elevation. Contours as in Figure
A.2.1 with maximum value of about 0. l&

Case _5-40, DRY - Microburst NASA Derived

E-W I Km Averaged F Factor at Z= 50.@ meters

18,3

14.3

v10 3
o

6.3

2.3
--4.2 -0,2 3.8 7.8 11 .8

X (KM)

FigureA.2.20 DataSet#5-ad):East-WestJ_,<,nat50 meterselevation.ContoursasinFigure
A.2.l withmaximum valueofabout(}.IX.
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Case "5-45,

N-S I Km

19.7

DRY - Microburst NASA Derived

Averaged F Factor at Z = 300.0 meters

15.7

"/11 7

>..-

7.7

3.7
-3.7 0.3 4.3 8.3 12.3

X {KM)

Figure A.2.21 Data Set #5-45: North-South FKm at 300 meters elevation. Contours as in Figure

A.2.1 with maximum value of about O. 16.

Case "5-45, DRY - Microburst NASA Derived

N-S I Km Averaged F Factor at Z= 50.0 met'ers

19.7

15.7

Figure A.2.22 Data Set #5-45: North-South FKm at 50 meters elevation. Contours as in Figure

A.2.1 with maximum value of about O. 15.
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Case "5-45,

E-W I Km

19.7

DRY - M_croburst NASA

Averaged F Factor at Z =

Derived

300.0 meters

15.7

Vll 7

7.7

3.7
-3.7 0.3 4.3 8.3 12.3

X (KM)

Figure A.2.23 Data Set #5-45: East-West FKm at 300 meters elevation. Contours as in Figure

A.2.1 with maximum value of about 0.20.

Case #5-45, DRY - Microburst NASA Derived

E-W I Km Averaged F Factor at Z= 50.0 meters

19.7

15.7

',z"

"11 7

>.,-

7.7

3.7
-3.7 0.3 4.3 8.3 12.3

X (KM)

Figure A.2.24 Data Set #5-45: East-West FKm at 50 meters elevation. Contours as in Figure

A.2.1 with maximum value of about I}. 16.
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Case _6-14,

N-S 1 Km

6 5

4 5

-- 2 5

>- 0 5

-1 5

-3 5

Highly

Averaged

asymmetric Microburst

F Factor at Z= 300.0 meters

I J I I I

12.1 14.1 16.1

X (KM)

18.1

Figure A.2.25 Data Set #6-14: North-South FKm at 300 meters elevation. Contours as in Figure

A.2.1 with maximum value of about 0.16.

Case "6-14,

N-S 1 Km

6 5

4 5

2 5

v

>- 0 5

-1 5

-3 5

Highly asymmetric Microburst

Averaged F Factor at Z= 50.0

/ \o /

i I I I I I L I

8.1 10.1 12.1 14.1 16.1
X (KM)

meters

Figure A.2.26 Data Set #6-14: North-South FKm at 50 meters elevation. Contours as in Figure

A.2.1 with maximum value of about 0.17.
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Case "6-1 4,

E-W 1 Km

6 5

4 5

- 2 5

x,"

>- 0 5

-1 5

-3 5

Highly

Averaged

% N, ,:,:..,

I I I _J I I

8,1 10.1 12.1 14.1 16,1

X (KM)

asymmetric Hi crobursl

F Factor at Z = 300.0 meters

I

8.1

Figure A.2.27 Data Set #6-14: East-West FKm at 300 meters elevation. Contours as in Figure

A.2.1 with maximum value of about 0.12.

Case "6- 1 4,

E-W 1 Km

6 5

Highly asymmetric Microburst

Averaged F Factor at Z= 50.0 meters

4 5

- 2 5

3L

>- 0 5

-I 5

-3 5
8.1 10.112.1 14.1 16.1 18.1

X (KM)

Figure A.2.28 Data Set #6-14: East-West Frun at 50 meters elevation. Contours as in Figure
A.2.1 with maximum value of about 0.13.
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Case u7-27, Gust Front

E-W I Km Averaged F Factor at Z= 30@.0 meters

Figure A.2.29 Data Set #7-27: East-West FKm at 3(X) meters elevation. Contours as in Figure
A.2.1 with maximum value of about O. 16.

Case "7-27,

E-W 1 Km

3.5 I--,\,,_"['_\_

2.5 L_)]_ . _
- F/,'-'.-\ "
+- 1 5 F,:5'",-,'"I

F---_|I I ii t "llllllj

>- " L lh' _ _#,+
I--"I, _ ,. ,_ ._,1

-0.5 Ft',
-1 .5 I _llll'lllll/l{_'

18.5 20.5

Gust Front

Averaged F Factor at Z:

II '_ %_x\i_,,c,,,_C_

,',,'-,//.,5, ,"_

22.5 24.5

X

" IIr "x t _ I
I D III'I

i I

I

III I I

. II _I

.dr, If Ill

26.5 28.5

(KM)

50.0 meters

I

I _ [

3B.5 32.5

Figure A.2.30 Data Set #7-27: East-West FKm at 50 meters elevation. Contours as in Figure

A.2.1 with maximum value of about O. 13.
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Appendix A.3

Radar Reflectivity Contour Plots
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Case "1-11, DFW Accident Case,

Radar Reflectivity (Dbz) at

4._ I I l I !

Wet Microburst

Z= 150.0 meters

I I

2.0

v 0 0

>-

-2.0

-4.0 , I I I I I J
-4.0 -2.0 0.0 2.0 4.0

X (KM)

Figure A.3.1 Data Set #1-11: radar reflectivity. The contour interval is 5.0. Maximum value is

about 56.

Case "2-37, 06120191 Orlando - NASA Event "143

Radar Reflectlvity (Dbz) at Z= 150.0 meters

6 1 tlII111111ti'illli1111J'l _j_'

3

v -I

-3

-6

-B

6

4

9

4

0 j i i i I i i I_L_L_I I I I I I I I I I I I I I | I

-8.8 -6.3 -3.8 -1 .3 1 ,2 3.7 6.2

X (KM)

Figure A.3.2 Data Set #2-37: radar reflectivity. Contours as in Figure A.3. ! but contours with a

negative v',due are dashed. Maximum value is about 53.
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Case #3-49, 07/11/88

Radar Reflectivity

1 5 ' ' I ' ' I

Denver

(Dbz)

f ) )

- Hultiple

at Z= 150.0

Hicroburst

meters

I 1 I I I ) J

0

-1

-3

v_ 4

>"-6

-7

-9

-10

0

5

0

5

0

5

0

5 I

.2

.._0=_

',,°///,-,__

-.lO_.. .

I I l I 1 I I I l I I I I I 1 I

4.2 7.2 10.2 13.2 16.2

X (KM)

9.2

Figure A.3.3 Data Set #3-49: radar reflectivity. Contours as in Figure A.3.2 with maximum value
of about 37.

Case #3-51 , 07/11/88

Radar Reflectivi ty

I 4 , i I i i I i

Denver - Multiple

(Dbz) at Z= 150.0

i I I I I I I I

-0

-1

-3

v_ 4

>---6

-7

-9

-10

1

6

1

6

1

6

1

6 i
2.2

0.--_.0

I I J I I 1 I I

5.2 8.2 11 .2

X (KM)

i I I I I i

14.2 17.2

Microburst

meters

''t

I

20.2

Figure A.3.4 Data Set #3-51: radar reflectivity. Contours as in Figure A.3.2 with maximum value

of about 43.
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Case "4-36, 07/14/82 Denver -

Radar Reflectivity (Obz) at

5.0 , I ' I ' I

Temperature Inversion

Z= 150.0 meters

I I '

3.0

- 1.0

v
w

>- -I .0

-3.0

@

, I i I _ I i I J J

.0 I-3.0 -1 .0 1 .0 3.0 5.13
X (KM]

Figure A.3.5 Data Set #4-36: radar reflectivity. Contours as in Figure A.3.2 with maximum value

of about 28.
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C&se "5-40, DRY - H i croburs t NASA Den i ved

Radar RefLectivily (Dbz) at Z= 150.(_ meters

18.3 , , , I , , , I , , , J , , ,

14.3

v10 3

>-

6.3

2.3 _ i i I L i t I i i i 1 i i i

-4.2 -0.2 3.8 7.8

X (KM)

1 .8

Figure A.3.6 Data Set #5-40: radar reflectivity. Contours as in Figure A.3.2 with maximum value
of about 20.

Case "5-45, DRY - Microburst NASA Derived

Radar Reflectivity (Dbz) at Z= 150.0 meters

19.7 ,,, i,,, I,,, i , , ,

15.7

Vll 7

>-

7.7

3.7 , , , i , , , i , , , I , , ,
-3.7 8.3 4.3 8.3

X (KM)

2.3

Figure A.3.7 Data Set #5-45: radar reflectivity. Contours as in Figure A.3.2 with maximum value
of about 8.
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Case "6-14, Highly asymmetric

Radar Reflectivity (Dbz) at

6 5 ' I ' _ ' I

Hicroburst

Z= 150.@ meters

$-
v

4

2

5

5

>-05

-I

-3

5

' A_i _ "_

i I i I i I i I

8.1 10.1 12.1 14.1 16.1

X (KH)

8.1

Figure A.3.8 Data Set #6-14: radar reflectivity. Contours as in Figure A.3.2 with maximum value
of about 52.

Ca58

v

>-

"7-27, Gust Front

Radar" Reflectivi ty (Dbz) at

5 I-\ )../'__-J_f// I_'_

5

18.5 213.5 22.5

3

2

1

0

-e

-1

Z= 1 50 . 0 me ter's

1 ' I i!

7._'_

J I i 1

24.5 26.5 28.5 313.5 32.5

X (KM)

Figure A.3.9 Data Set #7-27: radar reflectivity. Contours as in Figure A.3.2 with maximum value
of about 54.
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Appendix A.4

Wind Vectors
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Case "1-1 1 , DFW

Veloci ty

4.0

Accident Case, Wet

Vectors at Z= 50.0

M croburst

meters

-4.0
-4.0 -2.0 0.0 2.0 4.0

X (KM) 25. m/s

Figure A.4.1 Data Set #1-11" horizontal wind vectors at 50 meters elevation•

Case "I-11, DFW Accident Case, Wet Microburst

Ve[oc Y: 0.000 kilometers

N

i ty Vec tors at

2. 0
_ --7-T1/TT__

1 .5 .............. "._
Z ....... ,,pp_
-. .... ,,rltl _

1 0 - ,, ,r,,_,_
- .,,,_t, _,[
........,._,.,_Z

0.5 _-:: : :::_

-4.0 -2.0 0.0

X (KM)

'd _ " i .... ! ' -

.d_ - .......... -
,i¢s_ _ _ , , , .....

,Xft, ...... -
_l.t tt ....... :
-"I_.-./?," ...... .-_

2.0 4.0

25. mls

Figure A.4.2 Data Set # I - I 1: East-West vertical wind vectors at y = O Kin.
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Case "2-37, 06/28/91 Orlando - NASA Event "143

Velocity Yectors at Z = 50.0 meters

_........ ............. .............._

............. " .............36 ........ =_ t_/_ _ ............

::::::::::::::::::::::::

4 !!iiiii_f_iiii!!!ii_

iiiiiiiiiNi Jiiiiiiiiil
....................................

-8.8-6.3-3.8-1.31.23.76.2

X (KM) 25../_

v -1

-3

-6

'8

Figure A.4.3 Data Set #2-37: horizontal wind vectors at 50 meters elevation.

Case "2-37,

Velocity

N

06/20/91

Vectors

2.8

1.5

1.8

0.5

0.e
-8.8

Orlando - NASA Event "143

at Y= -1 .380 ki Iometers

....... '" ' "l'" .... " .... I--,. ,_,,_l.tl, l_W. _...... 1............ "1""" '_--_".4-..
i .......................... '_g'/._z"................................ -
: ......................... 'ul///2/_/ ............................... =
-- .......................... _:I,[Z_,II" .............................. --

"-'"" 2 22 _:2 _.::: :1"--,_zn'n_,/_,,_,_'--S:L._/..'_T'"__L-LYlI:T'.'.': -
........................... ,._ _ ...................... _=

......... ---_" ...... _)_]_/_1 _"_" .......................
- : _ --'-"_'""'_.k_tT/_ _....... " ...................... :-'

-6.3 -3.8 - .3 1 .2 3.7 6.2

X KH ) 25. m/_

Figure A.4.4 Data Set #2-37: East-West vertical wind vectors at y = -1.4 Kin.
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C&se

1

0

-1

-3
_r-

v_ 4

>- -6

-7

-9

-10

.3-49,

5

i

i

0,

5:
4"

oi

0:

5

0

5

07/11/88 Denver

Velocity Vectors at

- Hultip[e H croburst

Z = 50._ meters

i'lllii;i 1.........,,_,,-',,_,,',,,,,,,,,,,,,,:,'"-_. ,,i_--, ;- ,;...................

. _,_, , ........ •._x r#,, .....
........ • _ //,,, ....

--,, , ......... u-'d,Z 1 , ....... -

=============================================............................

.2 4.2 7.2 10.2 13.2 16.2 19.2
X (KH) 25. m/s

Figure A.4.5 Data Set #3-49: horizontal wind vectors at 50 meters elevation.

C&se

2.0

1 5

N 0 5

Figure A.4.6 Data Set #3-49: North-South vertical wind vectors at x = 8.5 Km.

A-34



C&se

1

-0

-1

-3

_-4

-7

-9

-10

=3-51

4

1

6

1

6

6

, 07111/88 Denver - Multiple M croburst

Velocity Vectors at Z = 51_.1_ meters

, iI,, ...............
_, ,...,.,..,...,.:
_, ,, ,,,,,,,,, .......

• L % ., ,, o ,, _ o • . - .* ..,-,¢

"-"/./,'.".//./,1 ,_ _, _, _ ......................

_..,,=====================================
-_&: 5" ] _" ] Z ] Z ] : : _ ]: ]Z I"Z ]" 3 : ]" ; _ ] Z ] _ ]:

2.2 5.2 8.2 11 .2 14.2 17.2 20.2

X (KM) 25. _/s

Flgure A.4.7 Data Set #3-51: horizontal wind vectors at 50 meters elevation.

v

PM

C&se _3-51, 07/11/88 Denver - Multiple Microburst

Velocity Vectors at Y= -5.07e kilometers

•n_'.¢,_lO, ......... ",'._,Udl¢,,""_l IIIt".__'.PJ_TI _ ..... I _'' _

t_*,_.............. "",_lll,lt °'''_'." di,V"---_'¢ 1w........... ,,

5.2 8.2 11.2 14.2

X (KM)

2.0

1 5

1 0

0 0
2.2

. tf,_ _ ......

.,,,,;,,-_-_

7.2 20.2
25. ml_

Figure A.4.8 Data Set #3-5 l: East-West vertical wind vectors at y = -5. l Kin.
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Case "4-36,

Velo

5 0

3 0

- 1 0

>--1 0

-3 0

-5 0
_1;:

07/14/82 Denver - Temperature

city Vectors at Z = 50.0 meters

,° ...... ,,,,°,,,_°,,°,,..,_,J,,,o,°,,,°o,,° .....
,,,o,,,,,,,,,,,,_,,,°,,.,,,J_t,_o,,B,,.,,_•o ....
. ....... ,,•°,.,•,,,,,.,,,, ......... .•,oo• .......

..... °•,,,,••,*°,,,,,., .... ,,,,,°,,,,,o,•,oo,o,.

.,,.•,,•,,°°°,,,°, ................ •••,,•,•oo.•.,

....... , ....................... o ......

.......... • ,,°,,° .... .

• :i::::::T

... - .........

o,• .... •.,• .......................

...... ,•, ..... °._

............ ° ................. ,,,,,., .......

• ......... .,,.,. ............. , .... ,,,,•,°• ......

° .... ..,,,,,.,•,,°,,o,o.,,,,,.,°,,,,,,°•,,, .....
.,,,,, ..... ,,.,,,°,,.,,,,,,,,,,,,,,, ............

!!!;!!?!i!!!!;!!!!i!!!!i!!!!i!!!!i!!!!i!!!!i!!!:
.0 -3.0 -1.0 1.0 3.0 5.0

X {KM) 25. m/s

Invers ion

Figure A.4.9 Data Set #4-36: horizontal wind vectors at 50 meters elevation•

Case

v

N

"4-36, 07/14/82

Ve Ioc i ty Vect. ors ,,t Y

2 . 0 :....... ,.........I.........' .....I 'L
................................. ,1'

1 5 .................................. _'
• 7 ............... ,npf,..,,,,, .... I

-- ......... LI _.._','_., t,,,_1 0
t

0.5
................... .....,

0.0 :".......' ......... i...... , ......u-_
-_ .0 -3.0 -I .{_

Denver - Temperature Inversion

_.000 kilometers

1 ILIIII.'iiiiiiiii!.iiiiiiiIiiiiii-

'..,,o,__';;...........
J'-uJl_it-...................-

..............--
..".,_w_,_ _ ............... _

:::::::::::::::::::::::::::
I .0 3.0 5.0

X (KM) 25. m/5

Figure A.4.10 Data Set #4-36: East-West vertical wind vectors at y = 0 Km.
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C&se #5-40, DRY

Velocity

18.3

14.3

- Hicroburst NASA Derived

Vectors at Z= 50.0 meters

-0.2 3.

X (KM)

Figure A.4.11 Data Set #5-40: horizontal wind vectors at 50 meters elevation.

Case =5-40, DRY - Hicroburst NASA Derived

Velocity Vectors at X= 3.790 Kilometers

2.0

1.5

"/ 1 0

N 0.5

0.0
2.3 6.3 10.3 14.3 18.3

Y (KM) 25. m/s

Figure A.4.12 Data Set #5-40: North-South vertical wind vectors at x = 3.8 Kin.
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C_se

15.7

Vll 7

- Microb

Vectors
,-_

X (KM)

Figure A.4.13 Data Set #5-45: horizontal wind vectors at 50 meters elevation.

C&se #5-45.

Velo(: i t.y

,y.

N

DRY - M;croburst NASA Derived

Vect.¢)r".; ,xL X: 4.262 ki Iom(;ters
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- _.... -_'t__\\'_%_,", _;,2 -

• - _. _wi[_,,,',,.'k.'C,,,, __
_" ',,,-,_{,7.'_ ..... '-, ...... " _...... ::

o._ __'_::::::::::::::::::::::::::"" ========================_.........
3.7 7.7 11 .7 15.7 9.7

Y (KMI 25. ,,,/s
---I),

Figure A.4.14 Data Set #5-45: North-South vertical wind vectors at x = 4.3 Km.
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C_se

>...

Microbursl

5_._ meters

Figure A.4.15 Data Set #6-14: horizontal wind vectors at 50 meters elevation.

C&se #0-14, Highly asymmetric Microburst

Velocity Vectors at X: 14.471 kilometers

2.0 -" "_ .... ,,lJ .... ' .... _.... ' .... i , _
--.11 ......... ,,,l_ ................. :

15- ...... , .............................

- f! • r

................ " r k,"/'''','_
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- ................ - kk_: .,,r.g_.-_._,.__...... ::::::::::_-

0.0 .... '- _J _ , ",,'i_,N,'_.-_..... L_ ,. [ , -
-3.5 -1 .5 e.5 2.5 4.5 6.5

Y (KM) 25. m/s
---9'

Figure A.4.16 Data Set #6-14: North-South vertical wind vectors at x = 14.5 Kin.
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C&se

3

2

0
>-

-0

-I

#7-27, Gust Front

Velocity Vectors at Z= 50.0 meters

I- l 1 _ I" "1 " I" _" "1 " _ - I-

5 l._-,..l_,l,,-* ----,_@,--t_----*-4,_.--_-_,_--

5 I ll_ r,. _ Z _--ll .I. _ .I b _-_l_i. I_ I

18.--"_2_.5 27.5 52.5" 76.5" 2"8.'5 -30. .5

X (KPI) 25. m/s

Figure A.4.17 Data Set #7-27: horizontal wind vectors at 50 meters elevation.

Case "7-27 , Gust Front

Velocity Vectors at

2.0

Y:: 1.000 kilometers

N

22.5 24.5 26.5 28.5 30.5 32.5

X (KM] 25. _/_

Figure A.4.18 Data Set #7-27: East-West vertical wind vectors at y = 1.0 Km. U velocity is

biased by 21 m/s to show winds relative to translation of gust front.
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Data Set #1" DFW Accident Case, Wet Microburst
Aligned for Takeoff, Far Microburst Time = 11 min.
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Data Set #1-1 l: aligned for takeoff ,_enario (far microburst) on track 90. The solid

line represents the l Kilometer averaged F factor, the short-dashed line represents the reflectivity

in dBZ, the long dashed line repre_nts the altitude of the sensor, and the dash-dot line represents

the wind speed along the flight path.wind speed.
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Data Set #1-11" as in figure A.5.1

0 1

but for ILS approach scenario on track 90.
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Orlando, Wet Microburst
"13me= 37 rain.
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Figure A.5.3 Data Set #2-37: as in figure A.5.1 but for ILS approach scenario on track 180.
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Data Set #2:6/20/91 Orlando, Wet Microburst
ILS Approach (Below Alert Threshold Shear) "13me= 37 rain.
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Figure A.5.5 Data Set #2-37: as in figure A.5.1 but for ILS approach scenario (below alert thresh-

old shear) on track 90. ,,
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Figure A.5.6 Data Set #3-49: as in figure A.5. ! but for ILS approach scenario (below alert thresh-

old shear) on track 90.
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Data Set #3:7/11/88 Denver, Multiple Microbursts
ILS Approach (Developing Microburst) Time = 49 min.
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Figure A.5.7 Data Set #3-49: as in figure A.5.1 but for ILS approach scenario (must alert) on
track 360.
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Data Set #3:7/11/88 Denver, Multiple Microbursts
Time = 51 rain.Aligned for Takeoff, Near Microburst
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Figure A.5.8 Data Set #3-51: as in figure A.5.I but for aligned for takeoff (near microburst) sce-
nario on track 360.
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Data Set #3:
Aligned for Takeoff, Far Microburst
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Figure A.5.9 Data Set #3-51: as in figure A.5.1 but for aligned for takeoff scenario (far
microburst) on track 90.
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Data Set #3-51: as in figure A.5. I but for ILS approach scenario on track 360.
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Data Set #3:
ILS Approach (Track 045)
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Figure A.5.11 Data Set #3-51: as in figure A.5. l but for ILS approach scenario on track 45.
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Figure A.5.12 Data Set #3-51" as in figure A.5.1 but for ILS approach scenario on track 90.
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Data Set #3:7/11/88 Denver, Multiple Microbursts

ILS Approach (Track 135) Time = 51 min.
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Figure A.5.13 Data Set #3-51: as in figure A.5. I but for ILS approach scenario on track 135.

Data Set #3:7/11/88 Denver, Multiple Microbursts
ILS Approach (Track 270) "13me= 51 rain.
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Figure A.5.14 Data Set #3-51: as in figure A.5.1 but for ILS approach scenario on track 270.
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7/11/88 Denver, Multiple Microbursts
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Figure A.5.15 Data Set #3-51: as in figure A.5.1 but for ILS approach scenario on track 315.

Data Set #3:7/11/88 Denver, Multiple Microbursts
Curved Approach at 200 knots Time = 51 min.
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Figure A.5.16 Data Set #3-51: curved approach flight scenario (right turn) with localizer on track

90. The solid line represents the 1 Kilometer averaged F Factor, the dashed line represents the

Reflectivity in dBZ, and the dash-dot line represents the wind speed along the flight path.wind
speed.
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Figure A.5.17 l)ata Set #4-M_: a.s in tigurc A.5. I but for aligned for takeoff ._enario (near

microburst) t)tl track 90.
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Figure A.5.18 Data Set #4-36: as in ligure A.5. I but for ILS approach scenario on track 90.
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Data Set #4:7/14/82 Denver, Temperature Inversion
Worst-case Drift Approach at 120 knots
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Figure A.5.19 Data Set #4-36: as in figure A.5. I but for worst-case drift ILS approach on track
90.

Data Set #5:7/8/89 Denver, Very Dry Microburst
Aligned for Takeoff, Far Microburst Time = 40 min.
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Figure A.5.20 Data Set #5-40: as in figure A.5. l but for aligned for takeoff scenario (far

microburst) on track 270.
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Data Set #5:7/8/89 Denver, Very Dry Microburst
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Figure A.5.21 l)ata Set #5-4(): as in figure A.5. I but for ILS approach on track 360.
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Data Sel #5-40: as in tigut_e A.5. I but for worst-case drift ILS approach on track
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Data Set #5:7/8/89 Denver, Very Dry Microburst
Go-around Maneuver Time = 40 min.
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Figure A.5.23 Data Set #5-40: as in figure A.5.1 but for go-around scenario on track 360.
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Data Set #5:718/89 Denver, Very Dry Microburst
Curved Approach at 200 knots (Left Turn) Time = 40 min.

15
A

E
10

®

> 5

O0

-10

-15

Reflecfivity

/uong PathWindSpeed
F Factor

1

I/

.b/'

//' l

i l

I' I

/ l

I l

/ I

t l

I l
I l

-S 0

Distance from Beginning of Localizer Course (Km)

0.15

0.10

U.

0.05 "

i
0,1_ _

-0.05

Figure A.5.24 Data Set #5-40: as in figure A.5.16 but curved approach flight scenario (left turn)
with localizer on track 270.
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Figure A.5.25 Data Set #5-40: as in figure A.5.16 but curved approach flight scenario (right turn)

with localizer on track 270.

Data Set #5:7/8/89 Denver, Very Dry Microburst
ILS Approach (Second Microburst Pulse) "13me= 45 rain.
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Figure A.5.26 Data Set #5-45: as in figure A.5. I but for ILS approach on track 360.
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Data Set #6: Highly Asymmetric Microburst

Curved Approach at 200 knots Time = 14 min.
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Figure A.5.27 Data Set #6-14: as in figure A.5.16 but curved approach flight scenario (right turn)
with localizer on track 180.

Data Set #6: Highly Asymmetric Microburst
ILS Approach (Track 360) Time = 14 min.
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Data Set #6-14: as in figure A.5.1 but for ILS approach scenario on track 360.
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Data Set #6: Highly Asymmetric Microburst
ILS Approach (Track (,)45) "13me = 14 rain.
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Figure A.5.29 Data Set #6-14: as in figu,'¢ A.5. i hut fi_r ILS approach scenario on track 45.
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Data Set #6: Highly Asymmetric Microburst
ILS Approach (Track 0<30) Time = t4 rain.
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l-:igure A.5.30 Data Set #6-14: as in figure A.5. I but for ILS approach scenario on track 90.
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Data Set #6: Highly Asymmetric Microburst
ILS Approach (Track 180) "13rne= 14 rain.
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Figure A.5.31 Data Set #6-14: as in figure A.5.1 but for ILS approach scenario on track 180.
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Figure A.5.32

Data Set #6: Highly Asymmetric Microburst
ILS Approach (Track 225) "13me= 14 min.
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Data Set #6-14: as in figure A.5.1 but for ILS approach scenario on track 225.
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Data Set #6: Highly Asymmetric Microburst
ILS Approach (Track 270) ]qrne = 14 min.
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Figure A.5.33 Data Set #6-14: as in figure A.5. I but fl_r ILS approach scenario on track 270.
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Figure A.5.34 Data Set #6-14: as in figure A.5. i but for ILS approach scenario on track 315.
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Data Set #7: Montana Sounding, Gust Front
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Figure A.5.35 Data Set #7-27: as in figure A.5.1 but for aligned for takeoff scenario (gust front

near departure end of runway) on track 270.
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APPENDIX B

SKEW-T DIAGRAMS 1

The chief data source for upper atmospheric data is the twice-daily (0000 and
1200 UTC) release of balloon-borne radiosondes from rawinsonde sites all over the

globe. This data is collected and archived by the World Meteorological Organization
(WMO - a part of the United Nations). A radiosonde is a balloon-borne package which
contains temperature, humidity and pressure sensors. Data measured from these
sensors is transmitted back to the ground station by telemetry. Altitude information is
not explicitly measured, but is derived from the radiosonde data by use of the ideal gas
law and integration of the hypsometric equation. The tracking of the balloons position
by the rawinsonde system's radar or radio direction finder, allows for the trigonometric
computation of upper-atmospheric wind data. The wind speed and direction,
temperature, dewpoint, pressure, and altitude data is used by weather forecasters and
is input into weather models, as well as being forwarded to the WMO.

To analyze rawinsonde data, a Skew-T (formally a Skew-T/Log-P) diagram is
used. This type of thermodynamic chart, which is widely used in meteorology, has its
ordinate proportional to In P and it abscissa proportional to (T + In P), where P is
atmospheric pressure and T is temperature. In order to understand the wealth of
information that it provides, we shall construct a Skew-T diagram by overlaying its
parts. The left side of Fig. B.1 shows the base of the Skew-T diagram --- the isobars
(constant pressure levels), the isotherms (lines of constant temperature), and the dry
adiabats. The isobars are represented on a logarithmic scale in order to approximate a
linear altitude axis:

dP gP
= -pg =

dz RT'

dP _ R___dz, (B-l)T =

where z is height, p is air density, g is acceleratidn due to gravity, and R is the gas
constant for dry air. If g/RT is assumed constant (a reasonable zeroth-order
assumption), then:

In P o¢ z. (B-2)

1Thefollowingtext is extractedwithminormodificationfromAppendixA of Baconet al. (1991).
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The isotherms are "skewed"' to improve the readability of the diagram. Finally,

the dry adiabats represent the decrease in temperature that a dry air parcel should

experience if it were to be expanded via an adiabatic process:

_ cp
where: 3' --, the ratio of the specific heats of dry air,

cv

=_ P= O_To)
(B-3)

Note that in Fig. B.1 that the dry adiabats (dotted lines in left figure) are not straight
lines, but are slightly curved and run from the lower right to the upper left corner of the

diagram. The angle between isotherms and dry adiabats is nearly 90 ° .

Vertical profiles of atmospheric temperature through clouds rarely follow that of a

dry adiabat because of the presence of moisture. At a given temperature and pressure,
there exists a maximum amount of moisture which can remain in the atmosphere as

vapor; the remainder must condense out, and in doing so release latent heat. The right
side of Fig. B.1 shows lines that represent this process. Lines of constant mixing ratio

(a mixing ratio is the amount of a given quantity divided by the amount of dry air) are
shown as straight dashed lines. [The vapor mixing ratio of a parcel of air is conserved
in absence of turbulence mixing, condensation, and evaporation.] Because of the large
number of lines which appear on a typical Skew-T diagram, we show the lines of

constant mixing ratio at regular multiplicative increments of a factor of two starting at
0.5 g/kg (grams of water vapor per kilogram of dry air). Thus the dashed line which

starts just above 10 ° C near the surface represents a constant mixing ratio of 8 g/kg.

As we mentioned, the water vapor in excess of the saturation mixing ratio must
condense out of the atmosphere releasing latent heat. Thus if we start with a saturated

air parcel and expand it adiabatically it would not have the temperature behavior of the
dry adiabat; the latent heat release would tend to make the saturation adiabat warmer.
This is shown by the gently-curved solid lines on the left side of Fig. B.2. Note that at
cold temperatures where the amount of water vapor in the air parcel must be small, the
saturation adiabats asymptotically approach the dry adiabats.

Finally, on the right side of Fig. B.2 we show the Skew-T diagram for the 1200
UTC sounding taken at Moscow on July 18, 1974. Note that once the temperature

(solid line) and dewpoint (dashed line) are known as functions of pressure, then it is
possible to determine an altitude axis to go along with the sounding. Starting from the
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surface, we note that the surface air was very humid, but that it was not saturated.

Thus the temperature lapse rate of the atmosphere near the surface was approximated
by a dry adiabat. If we extend the surface dewpoint along a line of constant mixing
ratio, the point at which it intersects this dry adiabat represents the altitude at which
condensation would begin (approximately cloud base). If you look closely at this
sounding, you will see that this is precisely where the temperature begins to diverge

from a dry adiabat and begin to follow a saturation adiabat. A region from 4 to 5 km
altitude where the temperature and dewpoint are nearly the same is indicative of
existing cloud cover. Above roughly 5.5 km there is virtually no measurable water
vapor as indicated by the dew point profile.

B-3



0

G

I:1
0

.<

I,,,

B-4



GEOPOTENTIAL AL'HTUDE (KM-AGL) °_

.......... :'": .....". ""er"._, :....... ""' ........ _'. ..... : ""
,'" • ." " " " " r o" ." • ." ,

" i ,IX
_ .

.,...,_ _

_o ... , ,_. _7._o
u ..... , .. _, "a_,_o

"0 _)
c ¢fJ

"_ " _0

o o o o o o oooo_ "oE

_[fIS .0
-0._ c
e"'D

. _, 0 8

_,_. _:_O.J

m Ec_

oJ

.__
l.t=

B-5





Appendix C

Aircraft Hazard Factor or F-factor Equations

The primary threat of microbursts to aircraft is the single or combined effect of

the horizontal velocity shear and downdraft motion. Either of these effects can penalize

the performance of an aircraft, and possibly result in a critical loss of altitude for arriving

or departing aircraft. A nondimensional index based on the fundamentals of flight
mechanics that quantifies the effect of wind shear on the aircraft energy state is the F-
factor (Bowles 1990):

F = 1 DU H W

g Dt _l (C-1)

where g is gravitational acceleration, U. is the horizontal component of wind velocity

along the flight path, w is the vertical component of wind velocity, and V. is airplane

velocity relative to the air mass. For the data shown in this document the term U. is

calculated by the dot product of the horizontal wind velocity and a unit vector that is the

aircraft velocity unit vector constrained to the horizontal plane at the airplane's position.
The first term on the right side of (C-1) represents the contribution of horizontal wind

shear to the performance of the aircraft, while the second term represents the

contribution due to vertical wind. Positive values of F indicate a performance-

decreasing condition, whereas negative values indicate a performance-increasing

situation. The F-factor can be interpreted as the gain or loss of an aircraft's potential
climb angle due to atmospheric winds. Note that with an airspeed of 75 m/s, a

headwind loss of 0.1 g (2 knots/sec) has the same effect on aircraft performance as a
downdraft of 7.5 m/s. The above formula can be simplified by noting that the database

wind fields are frozen in time. With this constraint DUH/Dt is then:

vO H •V,

Therefore for frozen wind fields the equation for the F-factor becomes:

(C-2)

The instantaneous equation above is then averaged over a 1-km segment resulting in

the following equation for the 1-km averaged F-factor or "FBAR" at point I_ (x,y,z):

1 LI2 _

FBAR = F(R)= _ J"F(R')ds (C-4)
L --i.12
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where:

= +

r_, = unit vector along the aircraft flight path

L=I km

For this application, the F-factor in (C-3) is calculated in three steps. First the quantity

UH is computed at the airplane's position and at a point 100 meters ahead in the

direction of flight t. The gradient of this quantity in the given direction is approximated

by taking the difference of these two values and dividing by 100 meters. This value is
multiplied by the airspeed, and divided by g to arrive at the complete value of the
horizontal term. The last term of (C-3) is the vertical wind speed at the airplane's

position over the airspeed. For this document the airspeed is assumed equal to the
groundspeed and is constant along a path. Finally (C-4) is applied to the calculated
values from (C-3). The along path F-factor plots are shown in appendix A-5.

Equation (C-4) allows the computation of F-factors along any segment.
Additional restrictions to the flight path can be made to give a quantitative assessment
of the hazard to aircraft throughout each of the data set domains without specifying

specific flight paths. These restrictions are to fix the airspeed and groundspeed at 77.2
m/s (150 knots), hold the airplane altitude constant, and assume parallel paths through
the data set in north to south or east to west directions. These restrictions result in
North-South and East-West F-factor fields. Note that with the above assumptions
FBAR would be the same for an aircraft flying south as for one flying north along the

same path. F-factor calculations with these constraints reduces to"

L

V,( v _ ) dxy "-
--" Y L _W

FBARN-s g L _ ,+-_ ,-_ L V, y_L_
2

(c-5)

L

1 dxy x+_FBARE_ w = V" (u -ux. Zw (C-6)
g ,,' Lv.

2

where Va is the magnitude of airspeed; u, v, and w are the velocity components of the

wind (explained in table 2.2); and dxy is the horizontal spacing of the data set
(explained in section 5). The second term in (C-5) and (C-6) is the average vertical
wind speed over the airspeed. The above equations are used to generate the F-factor

field plots shown in appendix A-2.

1The IMSL Math/Library (1989) routine "QD3VL" is used to interpolate tor the necessary velocity

components tor along path calculations.
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APPENDIX D

Supplementary Equations

Section D.1 discusses the relevant hydrometeor-size distributions that are used in

TASS, along with the subsequent diagnostic equations for radar reflectivity factor and
surface precipitation rate. Section D.2 lists empirical relationships between visibility and
rainfall rate; and formulas for converting temperature between Celsius, Kelvin and
Fahrenheit are provided in the final section for the users convenience.

D.1 Model Drop-Size Distributions and Subsequent Diagnostic Equations

In the TASS model formulation, the cloud hydrometeors are subdivided into 5 bulk

categories compromising nonprecipitating or suspended particles such as 1) liquid cloud
droplets and 2) ice crystal, as well as precipitating particles such as 3) raindrops, 4) snow,
and 5) hail/graupel. The distributions and contribution to the simulated radar reflectivity
factor are described below for only those variables which are included in the database.

[The variables not described in this section, such as cloud ice, melt before falling within
the windowed domain of the database.]

D.1.1 Size Distributions for Rain and Hail

The hydrometeor size distributions for both rain and hail are assumed to be inverse
exponential. Specifically, the size distribution for rain is (Marshall and Palmer 1948)

= NOR exp(- D---_R), (D-l)N(D_
"R

where N(DR) is the number of raindrops per unit diameter per unit volume, D R is the
raindrop diameter, A R is the inverse of the slope of the rain distribution and NOR is the
intercept. Similarly, the size distribution for hail is (Federer and Waldvogel 1975)

N(DH) = NoH exp(-A-_),
(D-2)

where N(DH) is the number of hail particles per unit diameter per unit volume, D H is the
hail particle diameter, .h.H is the inverse of the slope of the hail distribution and NOH is the
intercept.
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1969):
The slope factors can be determined from the above distributions as (Kessler

M__R )0.= and A H = (=NoH 6HAR = (=NoR 5. ' MH )0._ (D-3)

where _ is the density of water, _H is the average density of the hail particles, M R is
the rainwater content (rainwater mass contained per unit volume of air), and M R is the
hailwater content (hail mass contained per unit volume of air).

D.1.2 Parametedzation of Raindrop Intercept

Based on a survey of observed drop-size distributions, the well-known Marshal-
Palmer Intercept value of NOR = 8 x 10 6 m "4 (which was empirically-based on size

distributions measured in steady light rain) is both small and inappropriate for most

thunderstorm rainfalls. Furthermore, raindrop spectrum data obtained from Doppler radar
suggest that the intercept value depends on rainfall rate (e.g. Hodson 1986). One-
dimensional microphysics models (e.g, List et al. 1987) imply that the intercept should
increase with rainwater content (and rainfall rate) for moderate to heavy rainfall due to the
continuous production of small drops from the collisional breakup of drops.

The TASS model formulation, assumes a NOR that depends on rainwater content,
as based on measured data. The relationship is

NOR = 2.5 x 10 s MR0"37s (D-4)

where NOR has units of [ m4 ], and M R has units of [ kg m "3 ]. The above formula is
obtained from radar drop-size data within thunderstorms as reported in Sekhon and

Srivastava (1971). [Note that for rainwater contents less than 10-4 Kg m "3 (0.1 g m-3),
Eq. (D-4) gives value less than Marshal Palmer.]
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D.1.3 Contribution to Radar Reflectivity Factor From Rain

The contribution of radar reflectivity from rain can be determined
continuous drop spectrum by assuming Rayleigh scattering as:

from any

(D-5)

Integrating (D-5) with (D-l) and substituting (D-3) and (D-4) yields:

Z R = 1.1 x 104 M_ "47

where Z R has the conventional units of [ mms m"3 ], and M R has units of

(D-6)

[ g m'3 ].

D.1.4 Parameterization of Surface Rainfall Rate

A diagnostic equation for rainfall rate from either rainwater content or radar
reflectivity can be determined with the aid of the above equations.

The surface rainfall rate [mm hr"1 ] in terms of the raindrop spectrum is

 J'o"R R = 3.6 x 10e _ W(DR) D_ N(D_) dgR,
(D-7)

where W(DR) is the fall velocity of a raindrop with diameter DR. An approximation for the
fall velocity that is fitted from Gunn and Kinzer's (1949) experimental data (units MKS)
is

=3ee.s (D-8)

With (D-l), and (D-8), Eq. (D-7) may be integrated giving:

RR = 1.072 x 101° NOR A4"eert . (D-9)

By substituting (D-3) and (D-4) into (D-9), the rainfall rate may be expressed in terms of
the rainwater content as:

RR = 17.3 M_ "1_, (D-10)

where again M R is in units of [ g m"3 ]. Note that the rainfall rate is almost linerally-
proportional to the rainwater content.
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With (D-6) and
surface rainfall rate as:

(D-11) the radar reflectivity factor can be expressed in terms of

Z R = 245 R_"aa.

A comparison of (D-11 ) and the relation attributed to Marshall and Palmer,

Zmp : 200 RR1"6 ,

is ShOWn in Fig. D.1.

(D-11)

D.1.5 Formulas for Hailwater

Similar relationships between radar reflectivity, precipitation rate, and hailwater

content can be developed for hail, but are less general than those for rain since NOB and
may vary substantially with case. Care must be taken in developing these formulas

to include the effects of Mie scattering from wet hailstones. Formulas for hail, as well
as those already derived for rain, are summarized in D.1.6

70

mimi_60

_, 50

-10
10.2

Rainfall Rate vs Radar Reflectivity Factor

' ' '"'"1 ' ' '"'"1 ' ' '"'"1 ' ' '"'"1 ' ' "_"

- TASS
._ ....... Marshall Palmer ,,"S'_' / _

" j_.S i
L sSss I

. S SSS

I IIIIIII I I IIIInl I I IIIIIII I I ,,..I R i nail.

10+ 10° 10+ 102 0s

Rainfall Rate (mm/hr)

Figure D.1 Comparison between Eq. (D-11) (which is derived from

TASS formulations) and MarshaI-Palmer's empirical relationship for
rainfall rate vs radar reflectivity.
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D.1.6 Summary of Equations for Radar Reflectivity and Precipitation Rate

Relationships between radar reflectivity and precipitation rate for rain and for wet
hail are as follows:

Rain:

Hail."

where:

M R =

M H =

R R =

R H =

Z R =

Z H =

R R = 17.3 M R 1,1o4

R R = 0.016 ZR °'Ts

Z R = 245 RR1'3_

Z R = 1.1 X 104 MR 1"47

R H = 52 M H 1.125

R H = 6.8 x 10 .3 ZH °'68

Z H = 1591 RH1"48

Z H = 5.5 x 10 s MR l"ee

Rain content [ g m -3 ]

Hail content [ g m -3 ]

Surface rainfall rate [ mm/hr]

Surface precipitation rate for hail [ mm/hr ]

Radar reflectivity factor for rain [ mm 6 m 3 ]

Radar reflectivity factor for wet hail [mm 6 m -3 ]

Notes: 1 mm/hr = 0.03937 in/hr

dBZ = 10 Ioglo(Z R + ZH)
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D.2 Visibility

An empirical relationship between visual range and surface rainfall rate has been

formulated by Huffman and Haines (1984) and is listed below:

where:

and

h = 18.5 RR "0"63 ,

h = Visibility [ km ],

RR = Rainfall rate [ mm/hr ].

D.3 Temperature

Formulas for converting between degrees Celsius, Kelvin and Fahrenheit:

degrees Fahrenheit = 32 + 1.8 degrees Celsius

degrees Fahrenheit = 32 + 1.8 (degrees Kelvin - 273.15)

degrees Celsius = 5/9 (degrees Fahrenheit - 32)

degrees Celsius = degrees Kelvin - 273.15
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Appendix E

Sample FORTRAN Program to Read and Verify the
Database
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PROGRAM DATACHK
*_m_'_o.rt''t**t_te'_t_t_*'e_*'_o_*_*_*_*_*-*.t.'t**to

C
C THIS IS A PROGRAM TO CHECK 3-D DATA SETS IN FAA FORMAT.
C
C ..,, .t,,OO,,Q,, ,t, ,t.t_.., ,_.*,,,,,* .,* * *, *t,* .t • *,. *,.''II'IHHI''''O" *t't" *Ot'Q_''

PARAMETER(IMAX-201, JMAX=201, KMAX-41, NVAR-5)
INTEGER FTIN0 QLOC
DIMENSION QXYZ(IMAX,JMAX,KMAX,NVAR)
DIMENSION VARMAX(KMAX),VARMIN(KMAX)
INTEGER LOCMAX(3,KMAX),LOCMIN(3,KMAX)
LOGICAL UREAD,VREAD,WREAD
CHARACTER°80 INFILE,TITLE
CHARACTER'4 VAR
DATA QLOC/1/
DATA UREADI.FALSEJ, VREAD/.FALSE J, WREAD/.FALSE./

C
10

20

5O

WRITE(',') 'ENTER THE NAME OF THE DATA FILE TO CHECK'
READ(S,'(A)') INFILE
WRITE(60'(A,A)')' READING FROM DATA FILE = ',INFILE
WRITE(S,*) 'IS THE FILE FORMATTED OR BINARY?'
WRITE(6,*) ' 1 - FORMATTED'
WRITE(6,')'0 - BINARY '
READ(5,*) FTIN
IF(FTIN.NE.1 .AND. FTINNE.0) GOTO 20
IF(FTIN.EQ. 1) THEN

OPEN(UN IT,, 1,FILE-IN FILE,ER R= 10,FORM='FORMATTE D',STATUS='OLD')
READ(l, 1000,ERR-998) TITLE
READ(1,2000,ERR-998) VAR,IX,IY,IZ,TIME,XSTART,YSTART,DXY,DZ

ELSE
OP EN(UNIT= 1,FILE=INFILE,ERR= 10,FORM-'U NFORMATTED',STATUS='OLD')
READ(1 ,ERR=998) TITLE
READ(1 ,ERR-998) VAR,IX, IY,IZ,TIME,XSTART,YSTART,DXY,DZ

ENDIF
REWIND(1 )
IF(IX.GT.IMAX .OR. IY.GT.JMAX .OR. IZ.GT.KMAX) THEN

WRITE(*,')' ARRAY TOO LARGEI'
WRITE(*,'(A,315)')' IMAX,JMAX,KMAX = ',IMAX,JMAX,KMAX
WRITE(*,'(A,315)')' IX,IY,IZ = ',IX,IY,IZ
CLOSE(l)
STOP

ENDIF

REWIND(I)
IF(FTIN.EQ.1) THEN

RFAD(l, 1000) TITL E
ELSE

READ(1 ) TITLE
ENDIF
WRITE(','(A)')' TITLE LINE:'
WRITE(*,'(A)') TITLE
WRITE(',')' ENTER THE TYPE OF ANALYSIS TO PERFORM.'
WRITE(*,')' 1 - GLOBAL MINIMUM AND MAXIMUM'
WRITE(*,*)' 2 - PLANAR MINIMUM AND MAXIMUM (IN Z PLANES)'
READ(*,*) ICALC
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IF(ICALC.NE.1 .AND. ICALC.NE.2) GOTO 50
IVAR ,, 1

C
C LOOP OVER ALL VARIABLES STORED ON TAPE
C
300 CONTINUE

IF(FTIN.EQ.1) THEN
READ(1,2000,END-999) VAR,IX,IY, IZ,TIME,XSTART,YSTART,DXY,DZ
READ(1,3000,END,,999) (((QXYZ(I,J,K,QLOC),I=I,IX),J= 1,IY),K=I ,IZ)

ELSE
READ(1 ,END-999) VAR,IX,IY, IZ,TIME,XSTART,YSTART,DXY,DZ,

1 (((QXYZ(I,J,K,QLOC),I-1 ,IX),J= 1,IY),K., 1 ,IZ)
ENDIF

C
IF(VAR(1:1 ) .EQ. 'U' .OR. VAR(1:1 ).EQ.'V' .OR.

1 VAR(1 :I).EQ.'W') THEN
CALL DATFILL(QXYZ, IX,IY,IZ, UR EAD,VREAD,WREAD,VAR,

1 IMAX,JMAX,KMAX,NVAR,QLOC,DXY)
ENDIF

350 IVAR = IVAR + 1
IF(QLOC.EQ.2) VAR = 'EWFP
IF(QLOC.EQ.3) VAR = 'NSFP
IF(QLOC.NE.1) THEN

IF(QLOC.EQ.3)
1 WRITE(','(A,A,A)')' EXAMINING THE CALCULATED VARIABLE : ',

•2 'NORTH-SOUTH 1 KM AVERAGED F FACTOR'

IF(QLOC.EQ.2)
1 WRITE(','(A,A,A)')' EXAMINING THE CALCULATED VARIABLE : ',
2 'EAST-WEST 1 KM AVERAGED F FACTOR'

ENDIF
L=I
VARMAX(L) = -9.99E50
VARMIN(L) = 9.99E50
DO 400 K = 1, IZ

IF(ICALC.EQ.2) THEN
L=K
VARMAX(L) = -9.99E50
VARMIN(L) = 9.99E50

ENDIF
DO 400 J = 1, IY

DO 400 I = 1, IX
IF(QXYZ(I,J,K,QLOC) oGT. VARMAX(L)) THEN

VARMAX(L) = QXYZ(I,J,K,QLOC)
LOCMAX(1 ,L) = I
LOCMAX(2,L) = J
LOCMAX(3,L) = K

ENDIF
IF(QXYZ(I,J,K,QLOC) .LT. VARMIN(L)) THEN

VARMIN(L) = QXYZ(I,J,K,QLOC)
LOCMIN(1 ,L) = I
LOCMIN(2,L) = J
LOCMIN(3,L) = K

ENDIF
400 CONTINUE
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45O

998

999

1000
2000

IF(ICALC.EQ.1) THEN
IF(OLOC.EO. 1) THEN

WRITE(','(A,A,A)')' FOR THE VARIABLE = "',VAR,"'
ENDIF
WRITE(','(A,G15.7)')' MAXIMUM VALUE IS -',

1 VARMAX(1 )
WRITE(','(A,3115,A)') ° MAXIMUM VALUE IS AT ',

1 (LOCMAX(I, 1),1-1,3),' (I,J,K)'
XLOCMAX - XSTART. FLOAT(LOCMAX(1,1 )-I)*DXY
YLOCMAX - YSTART + FLOAT(LOCMAX(2,1 )-I)'DXY
ZLOCMAX - FLOAT(LOCMAX(3,1)-I)*DZ
WRITE(','(A,3G15.7,A)') ' MAXIMUM VALUE IS AT ',

1 XLOCMAX,YLOCMAX,ZLOCMAX,' (X,Y,Z)'
WRITE(','(A,G15.7)')' MINIMUM VALUE IS = ',

1 VARMIN(1)
WRITE(*,'(A,3115,A)')' MINIMUM VALUE IS AT ',

1 (LOCMIN(I,1),I=I,3): (I,J,K)'
XLOCMIN = XSTART. FLOAT(LOCMIN(1.1)-I)*DXY
YLOCMIN = YSTART + FLOAT(LOCMIN(2,1)-I)'DXY
ZLOCMIN = FLOAT(LOCMIN(3,1)-I)°DZ
WRITE(°,'(A,3G15.7,A)')' MINIMUM VALUE IS AT ',

1 XLOCMIN,YLOCMIN,ZLOCMIN,' (X,Y,Z) °
ELSE IF(ICALC .EQ.2) THEN

WRITE(','(A,A,A)')' FOR THE VARIABLE = ",VAR,"'
WRITE(','(A)') °VARIABLES .. Z,X1 ,Y1 ,VALMAX,X2,Y2,VALMIN'
DO 450 K = 1, IZ

XLOCMAX ,. XSTART + FLOAT(LOCMAX(1 ,K)-I)*DXY
YLOCMAX = YSTART + FLOAT(LOCMAX(2,K)-I)*DXY
ZLOCMAX = FLOAT(LOCMAX(3,K)-I)°DZ
XLOCMIN = XSTART + FLOAT(LOCMIN(1,K)-I)°DXY
YLOCMIN = YSTART + FLOAT(LOCMIN(2,K)-I)°DXY
WRITE(°,4000) ZLOCMAX,XLOCMAX,YLOCMAX,

1 VARMAX(K),XLOCMIN,YLOCMIN,VARMIN(K)
CONTINUE

ENDIF
IF(QLOCNE. 1) GOTO 999

GOTO 300
CONTINUE
WRITE(','(A)')' ERROR ON INPUT'
WRITE(*,'(A)')' RE-ENTER THE NAME OF THE DATA SET'
REWIND(1 )
GOTO 10
CONTINUE
IF(WREAD) THEN

OLOC = QLOC + 1
IF(UREAD .AND. VREAD) THEN

IF(QLOC.LE.3) GOTO 350
ENDIF

ENDIF
WRITE(6,*) 'END OF FILE... STOP'
CLOSE(l)
STOP
FORMAT(A80)
FORMAT(A4,/,314,/,SE 12.4)
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3000 FORMAT((8E10.4))
4000 FORMAT(F10.d,1X,2(F9.2,1X),F11.4,1X,2(F9.2,1X),F11.4)

END
O_tootottotoetotot toottootttotttottottt tttottt t_ottoetoootetotttott

C
C THIS IS A SUBROUTINE TO TAKE THE DATA AND PLACE IT INTO THE PROPER
C LOCATION TO CALCULATE THE 1 KM AVERAGED F FACTOR
C

OQOt tttottttotttototeetteQtoettooeototeotttotottot_rootttt_oototoettot_

SUBROUTINE DATFILL(QXYZ, IX,IY,IZ, UREAD,VREAD,WREAD,VAR,
1 IMAX,JMAX,KMAX, NVAR,QLOC,DXY)

DIMENSION QXYZ(IMAX,JMAX,KMAX,NVAR)
LOGICAL UREAD,VREAD,WREAD
INTEGER QLOC
CHARACTER°4 VAR
DATA ITYPE/0/
IF(VAR .EQ. 'U ') THEN

UREAD = .TRUE.
DO 400 1= 1, IX

DO 400 J = 1, IY
DO 4O0 K = 1, IZ

QXYZ(I,J,K,2) = QXYZ(I,J,K,QLOC)
400 CONTINUE

ELSE IF(VAR .EQ. 'V ') THEN
VREAD = .TRUE.
DO 410 1= 1, IX

DO 410 J- 1, IY
DO 410 K = 1, IZ

QXYZ(I,J,K,3) = QXYZ(I,J,K,QLOC)
410 CONTINUE

ELSE IF(VAR .EQ. 'W ') THEN
WREAD = .TRUE.
DO 420 1= 1, IX

DO 420 J = 1, IY
DO 420 K = 1, IZ

QXYZ(I,J,K,4) = QXYZ(I,J,K,QLOC)
420 CONTINUE

ENDIF
IF(WREAD .AND. VREAD) THEN

LOC = 5
IDIR = 2
CALL FFACT(DXY,QXYZ,IX, IY,IZ,NVAR,LOC,IDIR,IMAX,JMAX,KMAX,

1 ITYPE)
DO 600 1= 1, IX

DO 600 J = 1, IY
DO 600 K = 1, IZ

QXYZ(I,J,K,3) = QXYZ(I,J,K,LOC)
600 CONTINUE

ENDIF

625 IF(WREAD .AND. UREAD) THEN
LOC = 5
IDIR = 1
CALL FFACT(DXY,QXYZ,lX,IY, IZ,NVAR,LOC,IDIR,IMAX,JMAX,KMAX,

1 ITYPE)
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65O

C

DO 650 1- 1, IX
DO 650 J - 1, IY

DO 650 K = 1, IZ
QXYZ(I,J,K.2) - QXYZ(I,J,K,LOC)

CONTINUE
ENDIF
RETURN
END

SUBROUTINE FFACT(DXY,O,IX,IY,IZ,NVAR,LOC,IDIR,IMAX,JMAX,KMAX,
1 ITYPE)

C
C THIS IS A SUBROUTINE TO COMPUTE THE NORTH-SOUTH OR EAST-WEST 1 KM
C AVERAGED F FACTOR AND STUFF IT INTO THE ARRAY Q.
C
C IDIR - PARAMETER TO DETERMINE THE DIRECTION TO CALCULATE THE F
C FACTOR
C - 1 EAST-WEST CALCULATION
C = 2 NORTH-SOUTH CALCULATION
C ITYPE - PARAMETER TO DETERMINE WHAT GOES INTO THE F FACTOR
C CALCULATION
C ,,,0 INCLUDE BOTH VERTICAL AND HORIZONTAL COMPONENTS
C ,,, 1 INCLUDE ONLY HORIZONTAL COMPONENT
C ,, 2 INCLUDE ONLY VERTICAL COMPONENT
C Q - DATA ARRAY THAT CONTAINS THE VELOCITY COMPONENTS AS FOLLOWS:
C Q(I,J,K,2) = U OR WEST TO EAST VELOCITY
C Q(I,J,K,3) = V OR SOUTH TO NORTH VELOCITY
C Q(I,J,K,4) = W OR VERTICAL (POSITIVE UP)
C

DIMENSION Q(IMAX,JMAX,KMAX,NVAR)
C WRITE(','(A)')' INSIDE FFACT'
C WRITE(','(A,/,G10 4,7110)')' DXY,IX,IY,IZ,NVAR,LOC,IDIR,ITYPE=',
C 1 DXY,IX,IY,IZ,NVAR,LOC,IDIR,ITYPE

VAIN = 150.
GRAV = 9.8

C
C CONVERT VAIN FROM KNOTS TO METERS/SEC
C

VAIN = VAIN " 6080.27 * 12 " 2.54 / (100. * 3600.)
C
C DETERMINE THE NUMBER OF GRID CELLS IN 1000 METERS
C

IF(FLOAT(INT(1000.0E0/DXY)) EQ. 1000.0E0/DXY) THEN
I1000 = INT(1000.0E0/DXY ÷ 05)

ELSE
I1000 = INT(1000.0E0/DXY + 0.5)
WRITE(*,'(A)')' WARNING FROM FFACT .......
WRITE(*,'(A,F10 1,A)')

1 'F FACTOR CALCULATION BASED ON DISTANCE OF
2 (I1000)'DXY,' METERS!'

ENDIF
C
C COMPUTE THE COEFFICIENT TO MULTIPLY BY
C
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FFCOEF1"=VAIR/(GRAV*FLOAT(I1000)°DXY)
FFCOEF2 ,=1.0E0/(FLOAT(I1000+1)°VAIR)
SWITCH1 ,= 1.0E0
SWITCH2 = 1.0E0
IF(ITYPE.EQ.1) SWITCH2 = 0.0E0
IF(ITYPE.EQ.2) SWITCH1 "=0.0E0
IF(IDIR .EQ. 1) THEN

C
C COMPUTE EAST-WEST F FACTOR
C

IDISP = INT(FLOAT(I1000)/2.0E0)
lEND = IX - 11000
DO 300 K "=1, IZ

DO 300 J "= 1, IY
DO 200 I = 1, lEND

WSUM = 0o0E0
DO 100 L = 0, I1000

WSUM = WSUM + Q(I+L,J,K,4)
100 CONTINUE

Q(I+IDISP,J,K,LOC) = FFCOEF1 °SWITCH1 *(Q(I+I1000,J,K,2)-
1 Q(I,J,K,2)) - FFCOEF2°WSUM*SWlTCH2

CONTINUE
CONTINUE

200
300
C
C
C

EXTRAPOLATE END VALUES TO COVER ENTIRE GRID

DO 310 K "=1, IZ
DO 310 J = 1, IY . -

DO 310 1= 1, IDISP
Q(I,J,K,LOC) = Q(IDISP+I ,J,K,LOC)

310 CONTINUE
DO 320 K = 1, IZ

DO 320 J = 1, IY
DO 320 1= lEND + 1, IX

Q(I,J,K,LOC) = Q(IEND,J,K,LOC)
320 CONTINUE

ELSE IF(IDIR.EQ.2) THEN
C
C COMPUTE NORTH-SOUTH F FACTOR
C

JDISP = INT(FLOAT(I1000)/2o0E0)
JSTART = JDISP + 1
JEND = IY- 11000
DO 600 K = 1, IZ

DO 600 1= 1, IX
DO 500 J = 1, JEND

WSUM = 0.0E0
DO 400 L = 0, I1000

WSUM "=WSUM + Q(I,J+L,K,4)
400 CONTINUE

Q(I,J+JDISP,K,LOC) = FFCOEFI*SWlTCHI*(Q(I,J+I1000,K,3)-
1 Q(I,J,K,3)) - FFCOEF2*WSUM*SWlTCH2

500 CONTINUE
600 CONTINUE
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C
C EXTRAPOLATE END VALUES TO COVER ENTIRE GRID
C

DO 610 K = 1, IZ
DO 610 1= 1, IX

DO 610 J = 1, JDISP
Q(I,J,K,LOC) - Q(I,JDISP+I,K,LOC)

610 CONTINUE
DO 620 K - 1, IZ

DO 620 1- 1, IX
DO 620 J - JEND + 1, IY

Q(I,J,K,LOC) - Q(I,JEND,K,LOC)
620 CONTINUE

ENDIF
RETURN
END
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Appendix F

Output from Sample FORTRAN Program to Read
and Verify the Database
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DFW Accident Case, Wet Microburst, Rain and HailCase #1-11:
W

23.23900
115

1700.000
-23.23900

47

-1700.000
N

23.23900
81

0.0000000E+00
-23.23900

81 47
0.0000000E+00 -1700.000

N

81 1 (i,j,k)
O.O000000E+O00.O000000E+O0 (x,y,z)

For the variable = "U
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at

For the variable = "V
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at
For the variable = "W
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at
For the variable = "TAU"

81 1 (i,j,k)
0.0000000E+00 0.0000000E+00 (x,y,z)

115 1 (i,j,k)
1700.000 0.0000000E+00 (x,y,z)

Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at

1 (i,j,k)
0.0000000E+00 (x,y,z)

7.681050
62 43 10 (i,j,k)

-950.0000 - 1900.000 450.0000 (x,y,z)
-16.05312

78 71 21 (i,j,k)
-150.0000 -500.0000 1000.000 (x,y,z)

309.3200
72 33

-450.0000 -2400.000
289.7400

67 62
-700.0000 -950.0000

1 (i,j,k)
0.0000000E+00 (x,y,z)

40 (i,j,k)
1950.000 (x,y,z)

For the variable -- "RAIN"
Maximum value is = 4.838400
Maximum value is at 79 79 1 (i,j,k)
Maximum value is at - 100.0000 -100.0000 0.0000000E+00 (x,y,z)
Minimum value is = 0.0000000E+00
Minimum value is at 1 1 1 (i,j,k)
Minimum value is at -4000.000 -4000.000 0.0000000E+00 (x,y,z)

For the variable = "XIV"
Maximum value is = 17.70703
Maximum value is at 78 39 6 (i,j,k)
Maximum value is at -150.0000 -2100.000 250.0000
Minimum value is = 5.984900
Minimum value is at 81 81 40 (i,j,k)

(x,y,z)

Minimum value is at 0.0000000E+00 0.0000000E+00 1950.000

For the variable = "RRF"
Maximum value is = 64.36700
Maximum value is at 81 81 40 (i,j,k)

(x,y,z)
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Maximum value is at O.O000000E+O00.O000000E+O0 1950.000 (x,y,z)

Minimum value is = -2.161660
Minimum value is at 75 46 25 (i,j,k)
Minimum value is at -300.0000 -1750.000 1200.000 (x,y,z)

For the variable = "HAIL"
Maximum value is = 2.366000
Maximum value is at 81 81 40 (i,j,k)
Maximum value is at 0.0000000E+00 0.0000000E+00 1950.000
Minimum value is = 0.0000000E+00
Minimum value is at 1 1 1 (i,j,k)
Minimum value is at -4000.000 -4000.000 0.0000000E+00 (x,y,z)

13 (i,j,k)
600.0000 (x,y,z)

81 3 (i,j,k)
0.0000000E+00 100.0000 (x,y,z)

For the variable = "EWFF"
Maximum value is = 0.2208870
Maximum value is at 81 71
Maximum value is at 0.0000000E+00 -500.0000
Minimum value is = -0.1725874
Minimum value is at 32
Minimum value is at -2450.000
For the variable = "NSFF"
Maximum value is = 0.2208870
Maximum value is at 71
Maximum value is at -500.0000
Minimum value is = -0.1725874
Minimum value is at 81 32 3 (i,j,k)
Minimum value is at 0.0000000E+00 -2450.000 100.0000

81 13 (i,j,k)
0.0000000E+00 600.0000 (x,y,z)

(x,y,z)

(x,y,z)
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Case #2-37: 6/20/91 Orlando, Florida, NASA Research Flight, Wet Microburst
For the variable = "U "
Maximum value is = 15.53889
Maximum value is at 82 75
Maximum value is at -734.0000 -1480.000
Minimum value is - -17.23847
Minimum value is at 54 75
Minimum value is at -3534.000 -1480.000

For the variable = "V "
Maximum value is = 11.60058
Maximum value is at 76 116
Maximum value is at -1334.000 2620.000
Minimum value is - -14.93908
Minimum value is at 71 63
Minimum value is at -1834.000 -2680.000
For the variable = "W "
Maximum value is = 3.975184
Maximum value is at 60 121
Maximum value is at -2934.000 3120.000
Minimum value is = -13.75409

Minimum value isat 76 74
Minimum value is at -1334.000 -1580.000
For the variable = "TAU"
Maximum value is = 304.4023
Maximum value is at 43 123
Maximum value is at -4634.000 3320.000
Minimum value is- 287.7410
Minimum value is at 125 138
Minimum value is at 3566.000 4820.000

1 (i,j,k)
O.O000000E+O0 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

10 (i,j,k)
450.0000 (x,y,z)

14 (i,j,k)
650.0000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

For the variable = "XIV"
Maximum value is = 21.64085
Maximum value is at 41 94 3 (i,j,k)
Maximum value is at -4834.000 420.0000 100.0000 (x,y,z)
Minimum value is = 7.687082
Minimum value is at 71 73 41 (i,j,k)
Minimum value is at -1834.000 -1680.000 2000.000 (x,y,z)

For the variable = "RRF"
Maximum value is = 54.58204
Maximum value is at 56 94 41 (i,j,k)
Maximum value is at -3334.000 420.0000 2000.000 (x,y,z)

Minimum value is = -15.00000
Minimum value is at 1 1 1 (i,j,k)
Minimum value is at -8834.000 -8880.000 0.0000000E+00 (x,y,z)
For the variable = "RAIN"
Maximum value is = 5.819617
Maximum value is at 56 94 41 (i,j,k)
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Maximum value is at -3334.000 420.0000
Minimum value is = 0.0000000E+00
Minimum value is at 1 1
Minimum value is at -8834.000 -8880.000
For the variable = "EWFF"
Maximum value is = 0.1891977
Maximum value is at 75 75
Maximum value is at -1434.000 -1480.000
Minimum value is = -0.1044288
Minimum value is at 104 85
Minimum value is at 1466.000 -480.0000
For the variable = "NSFF _
Maximum value is-- 0.1796695
Maximum value is at 75 75
Maximum value is at -1434.000 -1480.000
Minimum value is = -0.8648731E-01
Minimum value is at 76 122
Minimum value is at -1334.000 3220.000

2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

5 (i,j,k)
200.0000 (x,y,z)

5 (i,j,k)

200.0000 (x,y,z)

3 (i,j,k)

100.0000 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)
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Case #3-49:7111/88
For the vanable= "U

Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at
For the vanable= "V
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at

Minimum value is at
For the vanable = "W

Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at

Denver, Colorado, Incident Case, Multiple Microburst
II

For the vanable
Maximum value is =
Maximum value is at

Maximum value is at
Minimum value is =

Minimum value is at
Minimum value is at

7.324199
44

5490.000
- 10.15697

9

1990.000
IQ

13.33055
67

7790.000
-9.167430

47

5790.000
N

5.690357
46

5690.000
-15.35832

138
14890.00

62 30 (i,j,k)

-4400.000 1450.000 (x,y,z)

55 4 (i,j,k)
-5100.000 150.0000 (x,y,z)

93 3 (i,j,k)
-1300.000 100.0000 (x,y,z)

23 3 (i,j,k)

-8300.000 100.0000 (x,y,z)

23 38 (i,j,k)
-8300.000 1850.000 (x,y,z)

56 24 (i,j,k)
-5000.000 1150.000 (x,y,z)

= "TAU"
303.7999

86 65

9690.000 -4100.000
282.4091

105 61
11590.00 -4500.000

For the vanable
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at

= "XlV"
5.352191

8 44

1890.000 -6200.000
3.351608

153 58
16390.00 -4800.000

= "RRF "
46.68984

108
11890.00

-15.00000
1

1190.000
= "RAIN"
is = 0.3320332
is at 107

For the vanable
Maximum value is =
Maximum value is at
Maximum value is at

Minimum value is =
Minimum value is at
Minimum value is at
For the variable
Maximum value
Maximum value

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

75 41 (i,j,k)
-3100.000 2000.000 (x,y,z)

1 1 (i,j,k)
- 10500.00 0.0000000E+00 (x,y,z)

59 38 (i,j,k)
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Maximum value is at 11790.00 -4700.000
Minimum value is = 0.0000000E+00
Minimum value is at 1 1
Minimum value is at 1190.000 -10500.00
For the variable = "HAIL"
Maximum value is = 0.1497605
Maximum value is at 108 75
Maximum value is at 11890.00 -3100.000
Minimum value is = 0.0000000E+00
Minimum value is at 1 1
Minimum value is at 1190.000 -10500.00
For the variable = "EWFF"
Maximum value is = 0.1908372
Maximum value is at 146 57
Maximum value is at 15690.00 -4900.000
Minimum value is = -0.8173751E-01
Minimum value is at 40 25
Minimum value is at 5090.000 -8100.000
For the variable = "NSFF"
Maximum value is = 0.2080122
Maximum value is at 142 57
Maximum value is at 15290.00 -4900.000
Minimum value is = -0.8103198E-01.
Minimum value is at 68 52
Minimum value is at 7890.000 -5400.000

1850.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)

2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

29 (i,j,k)
1400.000 (x,y,z)

35 (i,j,k)
1700.000 (x,y,z)

13 (i,j,k)
600.0000 (x,y,z)

2 (i,j,k)
50.00000 (x,y,z)
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Case #3-51 : 7/11/88
For the variable - "U
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at
For the variable = "V
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is --
Minimum value is at

Denver, Colorado, Incident Case, Multiple Microburst
II

19.27394

150 57 1 (i,j,k)
17132.00 -4970.000 0.0000000E+00 (x,y,z)

-19.69370

119 54 1 (i,j,k)
14032.00 -5270.000 0.0000000E+00 (x,y,z)

W

18.96012
133 72 1 (i,j,k)

15432.00 -3470.000 0.0000000E+00 (x,y,z)
-19.14365

128 43 1 (i,j,k)
Minimum value is at 14932.00
For the variable = "W "
Maximum value is = 6.139831
Maximum value is at 88
Maximum value is at 10932.00
Minimum value is = -15.94755
Minimum value is at 124

Minimum value is at 14532.00
For the variable = "TAU"
Maximum value is = 303.8180

Maximum value is at 88
Maximum value is at 10932.00
Minimum value is = 282.3883
Minimum value is at 99
Minimum value is at 12032,00
For the variable = "XlV"
Maximum value is = 5.330627
Maximum value is at 17
Maximum value is at 3832.000
Minimum value is = 3.286308
Minimum value is at 145
Minimum value is at 16632.00
For the variable = "RRF"
Maximum value is = 47.41735
Maximum value is at 105

Maximum value is at 12632.00
Minimum value is = -15.00000
Minimum value is at 1
Minimum value is at 2232.000
For the variable = "RAIN"
Maximum value is - 0.3601996
Maximum value is at 100

-6370.000

73
-3370.000

52
-5470.000

62
-4470.000

64
-4270.000

53

-5370.000

57
-4970.000

70

-3670.000

1
-10570.00

62

0.0000000E+00 (x,y,z)

12 (i,j,k)
550.0000 (x,y,z)

16 (i,j,k)
750.0000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

36 (i,j,k)
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Maximum value is at 12132.00 -4470.000
Minimum value is = O.O000000E+O0
Minimum value is at 1 1
Minimum value is at 2232.000 -10570.00
For the variable = "HAIL"
Maximum value is = 0.1641873
Maximum value is at 105 70
Maximum value is at 12632.00 -3670.000
Minimum value is =
Minimum value is at 1
Minimum value is at 2232.000
For he variable = "EWFF"
Maximum value is = 0.2102184
Maximum value is at 137
Maximum value is at 15832.00
Minimum value is = -0.1665037
Minimum value is at 88
Minimum value is at 10932.00
For the variable -- "NSFF"
Maximum value is = 0.2412621
Maximum value is at 125

Maximum value is at 14632.00
Minimum value is = -0.1312876
Minimum value is at 130
Minimum value is at 15132.00

O.O000000E+O0
1

-10570.00

58
-4870.000

77
-2970.000

53
-5370.000

1750.000 (x,y,z)

1 (i,j,k)
O.O000000E+O0 (x,y,z)

41 (i,j,k)

2000.000 (x,y,z)

1 (i,j,k)
O.O000000E+O0 (x,y,z)

17 (i,j,k)
800.0000 (x,y,z)

2 (i,j,k)
50.00000 (x,y,z)

8 (i,j,k)
350.0000 (x,y,z)

36 4 (i,j,k)
-7070.000 150.0000 (x,y,z)
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Case #4-36:7/14/82
For the variable = "U "
Maximum value is = 15.23200
Maximum value is at 111

Maximum value is at 500.0000
Minimum value is = -15.23200
Minimum value is at 91
Minimum value is at -500.0000
For the variable = "V "
Maximum value is = 15.23200

Maximum value is at 101
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at
For the variable = "W
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at
For the variable = "TAU"
Maximum value is =
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at

Denver, Colorado, Stable Layer, Warm Microburst

101 1 (i,j,k)
0.0000000E+00 0.0000000E+00 (x,y,z)

101 1 (i,j,k)
0.0000000E+00 0.0000000E+00 (x,y,z)

111 1 (i,j,k)
0.0000000E+00 500.0000

-15.23200
101 91

0.0000000E +00 -500.0000
N

6.074973
81 68

-1000.000 -1650.000
-21.01300

101 101
0.0000000E+00 0.0000000E+00

0.0000000E+00 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

13 (i,j,k)
600.0000 (x,y,z)

12 (i,j,k)
550.0000

303.8437

92 91 3 (i,j,k)
-450.0000 -500.0000 100.0000

284.3200
101 101 40 (i,j,k)

(x,y,z)

(x,y,z)

Minimum value is

For the variable =
Maximum value is --
Maximum value is at
Maximum value is at
Minimum value is =
Minimum value is at
Minimum value is at

at 0.0000000E+00 0.0000000E+00 1950.000
"RAIN"

0.2615300

101 101 26 (i,j,k)
0.0000000E+00 0.0000000E+00 1250.000

0.0000000E+00
1 1

-5000.000 -5000.000

(x,y,z)

(x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

For the variable = "XlV"
Maximum value is = 7.488725
Maximum value is at 66 23 3 (i,j,k)
Maximum value is at -1750.000 -3900.000 100.0000
Minimum value is = 2.769900
Minimum value is at 101 97 40 (i,j,k)
Minimum value is at 0.0000000E+00 -200.0000 1950.000
For the variable = "RRF"
Maximum value is = 36.29500

Maximum value is at 101 101 40 (i,j,k)

(x,y,z)

(x,y,z)
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Maximum value is at O.O000000E+O0
Minimum value is = -15.00000
Minimum value is at 1 1
Minimum value is at -5000.000 -5000.000
For the variable = "EWFF"
Maximum value is = 0.2888719

Maximum value is at 101 101 2 (i,j,k)
Maximum value is at O.O000000E+O00.O000000E+O0 50.00000
Minimum value is = -0.1147354
Minimum value is at 71 101 2 (i,j,k)
Minimum value is at -1500.000 O.O000000E+O0 50.00000
For the variable = "NSFF"
Maximum value is = 0.2888719
Maximum value is at 101 101 2 (i,j,k)
Maximum value is at O.O000000E+O00.O000000E+O0 50.00000
Minimum value is = -0.1147354
Minimum value is at 101 71 2 (i,j,k)
Minimum value is at

O.O000000E+O0 1950.000 (x,y,z)

1 (i,j,k)

O.O000000E+O0 (x,y,z)

(x,y,z)

O.O000000E+O0 -1500.000 50.00000 (x,y,z)

(x,y,z)

(x,y,z)
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Case #5-40: 7/8/89 Denver, Colorado, Very Dry Microburst

For the vadable = "U "
Maximum value is = 19.48976
Maximum value is at 93 84
Maximum value is at 4990.000 10575.00
Minimum value is = -12.29543
Minimum value is at 63 85
Minimum value is at 1990.000 10675.00

For the variable = "V "
Maximum value is = 24,91225
Maximum value is at 79 100
Maximum value is at 3590.000 12175.00
Minimum value is - -11.73100
Minimum value is at 81 70
Minimum value is at 3790.000 9175.000
For the variable = "W "
Maximum value is = 4.606630
Maximum value is at 111 80
Maximum value is at 6790.000 10175.00

Minimum value is = -15.16710
Minimum value is at 79 82
Minimum value is at 3590.000 10375.00
For the variable = "TAU"
Maximum value is = 307.9913
Maximum value is at 85 133
Maximum value is at 4190.000 15475.00
Minimum value is = 286.7864
Minimum value is at 80 69
Minimum value is at 3690.000 9075.000
For the variable = "XIV"
Maximum value is = 5.782187
Maximum value is at 128 152
Maximum value is at 8490.000 17375.00

Minimum value is = 1.796745
Minimum value is at 100 109
Minimum value is at 5690.000 13075.00
For the variable = "RRF"
Maximum value is = 34.20536
Maximum value is at 81 72
Maximum value is at 3790.000 9375.000
Minimum value is = -15.00000

Minimum value is at 1 1
Minimum value is at -4210.000 2275.000

For the variable = "RRFI"
Maximum value is = 34.20538
Maximum value is at 81 72

1 (i,j,k)
0.0000000E+00 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

18 (i,j,k)
850.0000 (x,y,z)

24 (i,j,k)
1150.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

14 (i,j,k)
650.0000 (x,y,z)

26 (i,j,k)
1250.000 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
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Maximum value is at 3790.000 9375.000
Minimum value is = -15.00000
Minimum value is at 103 84
Minimum value is at 5990.000 10575.00

For the variable = "RAIN"
Maximum value is = 0.2520440
Maximum value is at 81 73
Maximum value is at 3790.000 9475.000
Minimum value is = 0.0000000E+00
Minimum value is at 1 1
Minimum value is at -4210.000 2275.000
For the variable = "EWFF"
Maximum value is = 0.2137424 '
Maximum value is at 79 85
Maximum value is at 3590.000 10675.00
Minimum value is = -0.8902939E-01
Minimum value is at 100 73
Minimum value is at 5690.000 9475.000

For the variable = "NSFF"
Maximum value is = 0.2088467
Maximum value is at 80 89
Maximum value is at 3690.000 11075.00
Minimum value is = -0.1144817
Minimum value is at 82 64
Minimum value is at 3890.000 8575.000

2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

40 (i,j,k)
1950.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

17 (i,j,k)
800.0000 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)

7 (i,j,k)
300.0000 (x,y,z)

2 (i,j,k)
50.00000 (x,y,z)
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Case #5-45: 7/8/89 Denver, Colorado, Very Dry Microburst
For the variable = "U "
Maximum value is = 17.46074
Maximum value is at 103 84
Maximum value is at 6462.000 11993.00
Minimum value is = -16.05105
Minimum value is at 63 74
Minimum value is at 2462.000 10993.00

For the variable = "V "
Maximum value is= 20.70109
Maximum value is at 83 126
Maximum value is at 4462.000 16193.00
Minimum value is = -10.27237
Minimum value is at 81 63
Minimum value is at 4262.000 9893.000
For the variable = "W "
Maximum value is = 5.448867
Maximum value is at 93 128
Maximum value is at 5462.000 16393.00
Minimum value is = -12.61377
Minimum value is at 77 72
Minimum value is at 3862.000 10793.00
For the variable = "TAU"
Maximum value is = 308.0083
Maximum value is at 103 130
Maximum value is at 6462.000 16593.00
Minimum value is = 287.6288
Minimum value is at 78 67
Minimum value is at 3962.000 10293.00
For the variable = "XlV"
Maximum value is = 5.768254

Maximum value is at 130 157
Maximum value is at 9162.000 19293.00
Minimum value is = 1.846832
Minimum value is at 49 106
Minimum value is at 1062.000 14193.00
For the variable = "RRF"
Maximum value is = 27.10251
Maximum value is at 83 67
Maximum value is at 4462.000 10293.00
Minimum value is = -15.00000
Minimum value is at 1 1
Minimum value is at -3738.000 3693.000

For the variable = "RRFI"
Maximum value is = 27.10250
Maximum value is at 83 67

3 (i,j,k)
100.0000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

15 (i,j,k)
700.0000 (x,y,z)

21 (i,j,k)

1000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

15 (i,j,k)
700.0000 (x,y,z)

36 (i,j,k)
1750.000 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
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Maximum value is at 4462.000 10293.00
Minimum value is = -15.00000
Minimum value is at 114 87
Minimum value is at 7562.000 12293.00
For the variable = "RAIN"
Maximum value is = 0.8541232E-01
Maximum value is at 83 67
Maximum value is at 4462.000 10293.00
Minimum value is = 0.0000000E+00
Minimum value is at 1 1
Minimum value is at -3738.000 3693.000
For the variable = "EWFF"
Maximum value is = 0.1965592
Maximum value is at 81 70
Maximum value is at 4262.000 10593.00
Minimum value is = -0.9361018E-01
Minimum value is at 122 86
Minimum value is at 8362.000 12193.00

For the variable = "NSFF"
Maximum value is = 0.1628723
Maximum value is at 78 70

Maximum value is at 3962.000 10593.00
Minimum value is - -0.1201876
Minimum value is at 79 133
Minimum value is at 4062.000 16893.00

2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

8 (i,j,k)
350.0000 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)

24 (i,j,k)
1150.000 (x,y,z)

4 (i,j,k)
150.0000 (x,y,z)
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Case #6-14: Derived
For the variable = "U "
Maximum value is = 20.16742
Maximum value is at 60 43
Maximum value is at 13971.23 700.0000
Minimum value is- 0,1155418
Minimum value is at 9 48
Minimum value is at 8871.231 1200.000
For the variable = "V "
Maximum value is = 13.08692
Maximum value is at 63 46
Maximum value is at 14271.23 1000.000
Minimum value is = -6.537601
Minimum value is at 58 34

Florida Sounding, Highly Asymmetric Microburst

10 (i,j,k)
450.0000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

1 (i,j,k)
Minimum value is at 13771.23
For the variable = "W "
Maximum value is = 5.364121
Maximum value is at 67
Maximum value is at 14671.23
Minimum value is = -12.71668
Minimum value is at 65
Minimum value is at 14471.23
For the variable = "TAU"
Maximum value is = 304.1945

Maximum value is at 69
Maximum value is at 14871.23
Minimum value is = 288.4625
Minimum value is at 83
Minimum value is at 16271.23
For the variable = "XlV"
Maximum value is = 19.96644
Maximum value is at 37
Maximum value is at 11671.23
Minimum value is = 7.623531
Minimum value is at 68
Minimum value is at 14771.23
For the variable = "RRF"
Maximum value is = 52.28900
Maximum value is at 65

Maximum value is at 14471.23
Minimum value is -- -15.00000
Minimum value is at 1
Minimum value is at 8071.231
For the variable = "RRFI"
Maximum value is = 52.28904
Maximum value is at 65

-200.0000 0.0000000E+00 (x,y,z)

53 10 (i,j,k)
1700.000 450.0000 (x,y,z)

38 11 (i,j,k)
200.0000 500.0000 (x,y,z)

36 1 (i,j,k)
0.0000000E+00 0.0000000E+00 (x,y,z)

25 41 (i,j,k)
-1100.000 2000.000 (x,y,z)

36 5 (i,j,k)
0.0000000E+00 200.0000 (x,y,z)

36 41 (i,j,k)
0.0000000E+00 2000.000 (x,y,z)

38 3 (i,j,k)
200.0000 100.0000 (x,y,z)

1 1 (i,j,k)
-3500.000 0.0000000E+00 (x,y,z)

38 3 (i,j,k)
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Maximum value is at 14471.23
Minimum value is = -15.00000
Minimum value is at 61
Minimum value is at 14071.23
For the variable = "RAIN"
Maximum value is = 4.076537
Maximum value is at 65
Maximum value is at 14471.23

200.0000 100.0000 (x,y,z)

43 11 (i,j,k)
700.0000 500.0000 (x,y,z)

38 3 (i,j,k)
200.0000 100.0000 (x,y,z)

Minimum value is = 0.0000000E+00
Minimum value is at 1 1
Minimum value is at 8071.231 -3500.000

For the variable = "HAIL"
Maximum value is = 0.1737424
Maximum value is at 68 36

1 (i,j,k)
0.0000000E+00 (x,y,z)

41 (i,j,k)

Maximum value is at 14771.23
Minimum value is = 0.0000000E+00
Minimum value is at 1 1
Minimum value is at 8071.231 -3500.000
For the variable = "EWFF"
Maximum value is = 0.1294569
Maximum value is at 62 40
Maximum value is at 14171.23 400.0000
Minimum value is = -0.8020734E-01
Minimum value is at 72 42
Minimum value is at 15171.23 600.0000
For the variable = "NSFF"
Maximum value is = 0.1721279
Maximum value is at 63 41
Maximum value is at 14271.23 500.0000
Minimum value is = -0.9069768E-01
Minimum value is at 58 29
Minimum value is at 13771.23 -700.0000

0.0000000E+00 2000.000 (x,y,z)

1 (i,j,k)
0.0000000E+00 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)

2 (i,j,k)
50.00000 (x,y,z)

3 (i,j,k)
100.0000 (x,y,z)

2 (i,j,k)
50.00000 (x,y,z)
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Case #7-27:
For the variable = "U "
Maximum value is = 32.35432

Maximum value is at 7
Maximum value is at 19110.00
Minimum value is = -0.6180557

8/2/81 Adjusted Knowlton, Montana Sounding, Gust Front

16 3 (i,j,k)

0.0000000E+00 100.0000 (x,y,z)

Minimum value is at 58 12
Minimum value is at 24210.00 -400.0000

For the vadable = "V "

Maximum value is = 10.58100
Maximum value is at 65 10
Maximum value is at 24910.00 -600o0000

Minimum value is = -8.110295
Minimum value is at 1 3
Minimum value is at 18510.00 -1300.000

For the variable = "W "

Maximum value is = 13.14704
Maximum value is at 95 3
Maximum value is at 27910.00 -1300.000
Minimum value is = -12.30999

Minimum value is at 1 17
Minimum value is at 18510.00 100.0000

For the variable = "TAU"
Maximum value is = 303.1300
Maximum value is at 107 5

Maximum value is at 29110.00 -1100.000
Minimum value is = 284.0045
Minimum value is at 1 29

Minimum value is at 18510.00 1300.000
For the variable

Max=mum value is =

Max=mum value is at
Max=mum value is at
Minimum value is =

Minimum value is at

Minimum value is at
For the variable =

= "CLD"

0.9993626
27 38

21110.00 2200.000
0.0000000E+00

3 1
18710.00 - 1500.000

"XIV"

40 (i,j,k)

1950.000 (x,y,z)

35 (i,j,k)

1700.000 (x,y,z)

1 (i,j,k)

0.0000000E+00 (x,y,z)

21 (i,j,k)
1000.000 (x,y,z)

15 (i,j,k)

700.0000 (x,y,z)

1 (i,j,k)

0.0000000E+00 (x,y,z)

41 (i,j,k)

2000.000 (x,y,z)

40 (i,j,k)

1950.000 (x,y,z)

1 (i,j,k)

0.0000000E+00 (x,y,z)

Maximum value is = 16.86115

Maximum value is at 45 36 7 (i,j,k)
Maximum value is at 22910.00 2000.000 300.0000
Minimum value is = 3.033260

Minimum value is at 88 37 8 (i,j,k)
Minimum value is at 27210.00 2100.000 350.0000

For the variable = "RRF"
Maximum value is = 58.62407

Maximum value is at 1 14 41 (i,j,k)

(x,y,z)

(x,y,z)
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Maximum value is at 18510.00 -200.0000
Minimum value is = -15.00000
Minimum value is at 62 1
Minimum value is at 24610.00 -1500.000
For the variable = "RRFI"
Maximum value is = 58.62407
Maximum value is at 1 14
Maximum value is at 18510.00 -200.0000

Minimum value is = -15.00000
Minimum value is at 76 24
Minimum value is at 26010.00 800.0000
For the variable = "RAIN"
Maximum value is = 4.505048
Maximum value is at 1 9
Maximum value is at 18510.00 -700.0000
Minimum value is - 0.0000000E+00
Minimum value is at 67 1
Minimum value is at 25110.00 -1500.000

For the variable = "HAIL"
Maximum value is = 1.314436
Maximum value is at 1 14
Maximum value is at 18510.00 -200.0000
Minimum value is = 0.0000000E+00
Minimum value is at 1 1
Minimum value is at 18510.00 -1500.000

2000.000 (x,y,z)

1 (i,j,k)
O.O000000E+O0 (x,y,z)

41 (i,j,k)
2000.000 (x,yoz)

5 (i,j,k)
200.0000 (x,y,z)

1 (i,j,k)
O.O000000E+O0 (x,y,z)

1 (i,j,k)
O.O000000E+O0 (x,y,z)

41 (i,j,k)
2000.000 (x,y,z)

1 (i,j,k)
O.O000000E+O0 (x,y,z)

For the variable = "EWFF"
Maximum value is = 0.1635404
Maximum value is at 38 47 6 (i,j,k)
Maximum value is at 22210.00 3100.000 250.0000 (x,y,z)
Minimum value is - -0.2435648
Minimum value is at 69 6 27 (i,j,k)
Minimum value is at 27310.00 -800.0000 1300.000 (x,y,z)
For the variable = "NSFF"
Maximum value is - 0.1911894
Maximum value is at 1 17 13 (i,j,k)
Maximum value is at 18510.00 100.0000 600.0000 (x,y,z)
Minimum value is = -0.1559161
Minimum value is at 24 40 16 (i,j,k)
Minimum value is at 20810.00 2400.000 750.0000 (x,y,z)
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