1,282 research outputs found

    Continuous hydroponic wheat production using a recirculating system

    Get PDF
    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems

    Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase.

    Get PDF
    Electron transfer activities and steady state reduction levels of Fe-S centers of NADH-Q oxidoreductase were measured in mitochondria, submitochondrial particles (ETPH), and complex I after treatment with various reagents. p-Chloromercuribenzenesulfonate destroyed the signal from center N-4 (gx = 1.88) in ETPH but not in mitochondria, showing that N-4 is accessible only from the matrix side of the inner membrane. N-Bromosuccinimide also destroyed the signal from N-4 but without inhibiting rotenone-sensitive electron transfer to quinone, suggesting a branched pathway for electron transfer. Diethylpyrocarbonate caused oxidation of N-3 and N-4 in the steady state without changing N-1, suggesting N-1 is before N-3 and N-4. Difluorodinitrobenzene and dicyclohexylcarbodiimide inhibited oxidation of all Fe-S centers and tetranitromethane inhibited reduction of all Fe-S centers. Titrations of the rate of superoxide (O2-) generation in rotenone-treated submitochondrial particles were similar with the ratio [NADH]/[NAD] and that of 3-acetyl pyridine adenine nucleotide in spite of different midpoint potentials of the two couples. On reaction with inhibitors the inhibition of O2- formation was similar to that of ferricyanide reductase rather than quinone reductase. The rate of O2- formation during ATP-driven reverse electron transfer was 16% of the rate observed with NADH. The presence of NAD increased the rate to 83%. The results suggest that bound, reduced nucleotide, probably E-NAD., is the main source of O2- in NADH dehydrogenase. The effect of ATP on the reduction levels of Fe-S centers in well-coupled ETPH was measured by equilibrating with either NADH/NAD or succinate/fumarate redox couples. With NADH/NAD none of the Fe-S centers showed ATP induced changes, but with succinate/fumarate all centers showed ATP-driven reduction with or without NAD present. The effect on N-2 was smaller than that on N-1, N-3, and N-4. These observations indicate that the major coupling interaction is between N-2 and the low potential centers, N-1, N-3, and N-4. Possible schemes of coupling in this segment are discussed

    Evidence for mass ejection associated with long secondary periods in red giants

    Full text link
    Approximately 30% of luminous red giants exhibit a Long Secondary Period (LSP) of variation in their light curves, in addition to a shorter primary period of oscillation. The cause of the LSP has so far defied explanation: leading possibilities are binarity and a nonradial mode of oscillation. Here, large samples of red giants in the Large Magellanic Cloud both with and without LSPs are examined for evidence of an 8 or 24 μ\mum mid-IR excess caused by circumstellar dust. It is found that stars with LSPs show a significant mid-IR excess compared to stars without LSPs. Furthermore, the near-IR JJ-KK color seems unaffected by the presence of the 24 μ\mum excess. These findings indicate that LSPs cause mass ejection from red giants and that the lost mass and circumstellar dust is most likely in either a clumpy or a disk-like configuration. The underlying cause of the LSP and the mass ejection remains unknown.Comment: 6 pages, accepted for publication in Ap

    Effects of space shuttle launches STS-1 through STS-9 on terrestrial vegetation of John F. Kennedy Space Center, Florida

    Get PDF
    Space Shuttle launches produce a cloud containing hydrochloric acid (HCl), aluminum oxide (Al203), and other substances. Acidities of less than 0.5 pH have been measured routinely in association with the launch cloud. In an area of about 22 ha regularly exposed to the exhaust cloud during most Shuttle launches, acute vegetation damage has resulted from the first nine Shuttle launches. Changes include loss of sensitive species, loss of plant community structure, reduction in total cover, and replacement of some species by weedy invaders. Community level changes define a retrogressive sequence. One-time impacts to strand and dune vegetation occurred after launches of STS-8 and STS-9. Acute vegetation damage occurred especially to sensitive species. Within six months, however, recovery was nearly complete. Sensitivity of species to the launch cloud was partially predicted by previous laboratory studies. Far-field acidic and dry fallout from the cloud as it rises to stabilization and moves with the prevailing winds causes vegetation spotting. Damage from this deposition is minor; typically at most 1% to 5% of leaf surface area is affected. No plant mortality or community changes have occurred from far-field deposition

    System development and early biological tests in NASA's biomass production chamber

    Get PDF
    The Biomass Production Chamber at Kennedy Space Center was constructed to conduct large scale plant growth studies for NASA's CELSS program. Over the past four years, physical systems and computer control software have been continually upgraded and the degree of atmospheric leakage from the chamber has decreased from about 40 to 5 percent of the total volume per day. Early tests conducted with a limited degree of closure showed that total crop (wheat) growth from the best trays was within 80 percent of reported optimal yields for similar light levels. Yields from subsequent tests under more tightly closed conditions have not been as good--up to only 65 percent of optimal yields. Yields appear to have decreased with increasing closure, yet potential problems exist in cultural techniques and further studies are warranted. With the ability to tightly seal the chamber, quantitative data were gathered on CO2 and water exchange rates. Results showed that stand photosynthesis and transpiration reached a peak near 25 days after planting, soon after full vegetative ground cover was established. In the final phase of testing when atmospheric closure was the highest, ethylene gas levels in the chamber rose from about 10 to nearly 120 ppb. Evidence suggests that the ethylene originated from the wheat plants themselves and may have caused an epinastic rolling of the leaves, but no apparent detrimental effects on whole plant function

    Partner selection in agile supply chains: A fuzzy intelligent approach

    Get PDF
    Partner selection is a fundamental issue in supply chain management as it contributes significantly to overall supply chain performance. However, such decision-making is problematic due to the need to consider both tangible and intangible factors, which cause vagueness, ambiguity and complexity. This paper proposes a new fuzzy intelligent approach for partner selection in agile supply chains by using fuzzy set theory in combination with radial basis function artificial neural network. Using these two approaches in combination enables the model to classify potential partners in the qualification phase of partner selection efficiently and effectively using very large amounts of both qualitative and quantitative data. The paper includes a worked empirical application of the model with data from 84 representative companies within the Chinese electrical components and equipment industry, to demonstrate its suitability for helping organisational decision-makers in partner selection

    Fire, Hurricane and Carbon Dioxide: Effects on Net Primary Production of a Subtropical Woodland

    Get PDF
    Disturbance affects most terrestrial ecosystems and has the potential to shape their responses to chronic environmental change. Scrub-oak vegetation regenerating from fire disturbance in subtropical Florida was exposed to experimentally elevated carbon dioxide (CO2) concentration (+350ll-1) using open-top chambers for 11yr, punctuated by hurricane disturbance in year 8. Here, we report the effects of elevated CO2 on aboveground and belowground net primary productivity (NPP) and nitrogen (N) cycling during this experiment. The stimulation of NPP and N uptake by elevated CO2 peaked within 2yr after disturbance by fire and hurricane, when soil nutrient availability was high. The stimulation subsequently declined and disappeared, coincident with low soil nutrient availability and with a CO2-induced reduction in the N concentration of oak stems. These findings show that strong growth responses to elevated CO2 can be transient, are consistent with a progressively limited response to elevated CO2 interrupted by disturbance, and illustrate the importance of biogeochemical responses to extreme events in modulating ecosystem responses to global environmental change

    The Mission Accessible Near-Earth Objects Survey: Four years of photometry

    Get PDF
    Over 4.5 years, the Mission Accessible Near-Earth Object Survey (MANOS) assembled 228 Near-Earth Object (NEO) lightcurves. We report rotational lightcurves for 82 NEOs, constraints on amplitudes and periods for 21 NEOs, lightcurves with no detected variability within the image signal to noise and length of our observing block for 30 NEOs, and 10 tumblers. We uncovered 2 ultra-rapid rotators with periods below 20s; 2016MA with a potential rotational periodicity of 18.4s, and 2017QG18_{18} rotating in 11.9s, and estimate the fraction of fast/ultra-rapid rotators undetected in our project plus the percentage of NEOs with a moderate/long periodicity undetectable during our typical observing blocks. We summarize the findings of a simple model of synthetic NEOs to infer the object morphologies distribution using the measured distribution of lightcurve amplitudes. This model suggests a uniform distribution of axis ratio can reproduce the observed sample. This suggests that the quantity of spherical NEOs (e.g., Bennu) is almost equivalent to the quantity of highly elongated objects (e.g., Itokawa), a result that can be directly tested thanks to shape models from Doppler delay radar imaging analysis. Finally, we fully characterized 2 NEOs as appropriate targets for a potential robotic/human mission: 2013YS2_{2} and 2014FA7_{7} due to their moderate spin periods and low Δv\Delta v.Comment: Accepted for Publication, The Astrophysical Journal Supplement Serie

    Abundances in intermediate-mass AGB stars undergoing third dredge-up and hot-bottom burning

    Full text link
    High dispersion near-infrared spectra have been taken of seven highly-evolved, variable, intermediate-mass (4-6 Msun) AGB stars in the LMC and SMC in order to look for C, N and O variations that are expected to arise from third dredge-up and hot-bottom burning. The pulsation of the objects has been modelled, yielding stellar masses, and spectral synthesis calculations have been performed in order to derive abundances from the observed spectra. For two stars, abundances of C, N, O, Na, Al, Ti, Sc and Fe were derived and compared with the abundances predicted by detailed AGB models. Both stars show very large N enhancements and C deficiencies. These results provide the first observational confirmation of the long-predicted production of primary nitrogen by the combination of third dredge-up and hot-bottom burning in intermediate-mass AGB stars. It was not possible to derive abundances for the remaining five stars: three were too cool to model, while another two had strong shocks in their atmospheres which caused strong emission to fill the line cores and made abundance determination impossible. The latter occurrence allows us to predict the pulsation phase interval during which observations should be made if successful abundance analysis is to be possible.Comment: Accepted for publication in MNRA
    • …
    corecore