2 research outputs found

    Quintessential Kination and Cold Dark Matter Abundance

    Full text link
    The generation of a kination-dominated phase by a quintessential exponential model is investigated and the parameters of the model are restricted so that a number of observational constraints (originating from nucleosynthesis, the present acceleration of the universe and the dark-energy-density parameter) are satisfied. The decoupling of a thermal cold dark matter particle during the period of kination is analyzed, the relic density is calculated both numerically and semi-analytically and the results are compared with each other. It is argued that the enhancement, with respect to the standard paradigm, of the cold dark matter abundance can be expressed as a function of the quintessential density parameter at the onset of nucleosynthesis. We find that values of the latter quantity close to its upper bound require the thermal-averaged cross section times the velocity of the cold relic to be almost three orders of magnitude larger than this needed in the standard scenario so as compatibility with the cold dark matter constraint is achieved.Comment: Published versio

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore