12 research outputs found

    From QFT to DCC

    Full text link
    A quantum field theoretical model for the dynamics of the disoriented chiral condensate is presented. A unified approach to relate the quantum field theory directly to the formation, decay and signals of the DCC and its evolution is taken. We use a background field analysis of the O(4) sigma model keeping one-loop quantum corrections (quadratic order in the fluctuations). An evolution of the quantum fluctuations in an external, expanding metric which simulates the expansion of the plasma, is carried out. We examine, in detail, the amplification of the low momentum pion modes with two competing effects, the expansion rate of the plasma and the transition rate of the vacuum configuration from a metastable state into a stable state.We show the effect of DCC formation on the multiplicity distributions and the Bose-Einstein correlations.Comment: 34 pages, 10 figure

    On the Reconstruction of Palaeo-Ice Sheets: Recent Advances and Future Challenges

    Get PDF
    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus, the capability is developing to use all relevant palaeo-records to more strongly constrain deglacial (and to a lesser extent pre-LGM) ice sheet evolution. In working towards that goal, the accurate representation of uncertainties is required for both constraint data and model outputs. Close cooperation between modelling and data-gathering communities is essential to ensure this capability is realised and continues to progress
    corecore