551 research outputs found

    Asymptotics of solutions to Joukovskii-Kutta type problems at infinity

    Get PDF
    We investigate the behavior at infinity of solutions to Joukovskii-Kutta-type problems, arising in the linearized lifting surface theory. In these problems one looks for the perturbation velocity potential induced by the presence of a wing in a basic flow within the scope of a linearized theory and for the wing circulation. We consider at first the pure two-dimensional case, then the three-dimensional case, and finally we show in the case of a time-harmonically oscillating wing in ℝ3 in a weakly damping gas the exponential decay of solutions of the Joukovskii-Kutta problem

    Binary Black Holes: Spin Dynamics and Gravitational Recoil

    Full text link
    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are anti-aligned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with anti-aligned spins to fit the parameters in the \KKF{,} and verify that the recoil along the direction of the orbital angular momentum is sinθ\propto \sin\theta and on the orbital plane cosθ\propto \cos\theta, with θ\theta the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius.Comment: 15 pages, 10 figures, replaced with version accepted for publication in PR

    Gravitational recoil from spinning binary black hole mergers

    Get PDF
    The inspiral and merger of binary black holes will likely involve black holes with both unequal masses and arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal mass, non-spinning binaries. We present results from simulations of equal mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins of magnitude aa aligned/anti-aligned with the orbital angular momentum, with aa the dimensionless spin parameters of the individual holes. For the initial setups under consideration, we find a recoil velocity of V = 475 \KMS a. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection from the cores of dwarf galaxies of the final hole produced by the collision.Comment: 8 pages, 8 figures, replaced with version accepted for publication in Ap

    Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Full text link
    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1 to 2 MHz at the COoler SYnchrotron COSY at J\"ulich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.Comment: 10 pages, 10 figures, 4 table

    Fermion absorption cross section of a Schwarzschild black hole

    Full text link
    We study the absorption of massive spin-half particles by a small Schwarzschild black hole by numerically solving the single-particle Dirac equation in Painleve-Gullstrand coordinates. We calculate the absorption cross section for a range of gravitational couplings Mm/m_P^2 and incident particle energies E. At high couplings, where the Schwarzschild radius R_S is much greater than the wavelength lambda, we find that the cross section approaches the classical result for a point particle. At intermediate couplings we find oscillations around the classical limit whose precise form depends on the particle mass. These oscillations give quantum violations of the equivalence principle. At high energies the cross section converges on the geometric-optics value of 27 \pi R_S^2/4, and at low energies we find agreement with an approximation derived by Unruh. When the hole is much smaller than the particle wavelength we confirm that the minimum possible cross section approaches \pi R_S^2/2.Comment: 11 pages, 3 figure

    ER Stress in Diabetic Peripheral Neuropathy: A New Therapeutic Target

    Full text link
    Significance: Diabetes and other diseases that comprise the metabolic syndrome have reached epidemic proportions. Diabetic peripheral neuropathy (DPN) is the most prevalent complication of diabetes, affecting ?50% of diabetic patients. Characterized by chronic pain or loss of sensation, recurrent foot ulcerations, and risk for amputation, DPN is associated with significant morbidity and mortality. Mechanisms underlying DPN pathogenesis are complex and not well understood, and no effective treatments are available. Thus, an improved understanding of DPN pathogenesis is critical for the development of successful therapeutic options. Recent Advances: Recent research implicates endoplasmic reticulum (ER) stress as a novel mechanism in the onset and progression of DPN. ER stress activates the unfolded protein response (UPR), a well-orchestrated signaling cascade responsible for relieving stress and restoring normal ER function. Critical Issues: During times of extreme or chronic stress, such as that associated with diabetes, the UPR may be insufficient to alleviate ER stress, resulting in apoptosis. Here, we discuss the potential role of ER stress in DPN, as well as evidence demonstrating how ER stress intersects with pathways involved in DPN development and progression. An improved understanding of how ER stress contributes to peripheral nerve dysfunction in diabetes will provide important insight into DPN pathogenesis. Future Directions: Future studies aimed at gaining the necessary insight into ER stress in DPN pathogenesis will ultimately facilitate the development of novel therapies. Antioxid. Redox Signal. 21, 621?633.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140287/1/ars.2013.5807.pd

    Ni Catalysts Based on Attapulgite for Hydrogen Production through the Glycerol Steam Reforming Reaction

    Get PDF
    Attapulgite (ATP, a natural clay) was used as carrier to produce a nickel-based catalyst (Ni/ATP) for the work that is presented herein. Its catalytic performance was comparatively assessed with a standard Ni/Al2O3 sample for the glycerol steam reforming (GSR) reaction. It was shown that the ATP support led to lower mean Ni crystallite size, i.e., it increased the dispersion of the active phase, to the easier reduction of NiO and also increased the basicity of the catalytic material. It was also shown that it had a significant effect on the distribution of the gaseous products. Specifically, for the Ni/ATP catalyst, the production of liquid effluents was minimal and subsequently, conversion of glycerol into gaseous products was higher. Importantly, the Ni/ATP favored the conversion into H2 and CO2 to the detriment of CO and CH4. The stability experiments, which were undertaken at a low WGFR, showed that the activity of both catalysts was affected with time as a result of carbon deposition and/or metal particle sintering. An examination of the spent catalysts revealed that the coke deposits consisted of filamentous carbon, a type that is known to encapsulate the active phase with fatal consequences

    Unequal Mass Binary Black Hole Plunges and Gravitational Recoil

    Full text link
    We present results from fully nonlinear simulations of unequal mass binary black holes plunging from close separations well inside the innermost stable circular orbit with mass ratios q = M_1/M_2 = {1,0.85,0.78,0.55,0.32}, or equivalently, with reduced mass parameters η=M1M2/(M1+M2)2=0.25,0.248,0.246,0.229,0.183\eta=M_1M_2/(M_1+M_2)^2 = {0.25, 0.248, 0.246, 0.229, 0.183}. For each case, the initial binary orbital parameters are chosen from the Cook-Baumgarte equal-mass ISCO configuration. We show waveforms of the dominant l=2,3 modes and compute estimates of energy and angular momentum radiated. For the plunges from the close separations considered, we measure kick velocities from gravitational radiation recoil in the range 25-82 km/s. Due to the initial close separations our kick velocity estimates should be understood as a lower bound. The close configurations considered are also likely to contain significant eccentricities influencing the recoil velocity.Comment: 12 pages, 5 figures, to appear in "New Frontiers" special issue of CQ

    Data-driven selection of conference speakers based on scientific impact to achieve gender parity

    Get PDF
    A lack of diversity limits progression of science. Thus, there is an urgent demand in science and the wider community for approaches that increase diversity, including gender diversity. We developed a novel, data-driven approach to conference speaker selection that identifies potential speakers based on scientific impact metrics that are frequently used by researchers, hiring committees, and funding bodies, to convincingly demonstrate parity in the quality of peer-reviewed science between men and women. The approach enables high quality conference programs without gender disparity, as well as generating a positive spiral for increased diversity more broadly in STEM
    corecore