# Weierstraß-Institut für Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e.V.
Preprint
ISSN 0946 - 8633

# Asymptotics of Solutions to Joukovskii-Kutta-Type Problems at Infinity 

Rainer Hinder ${ }^{1}$, Erhard Meister ${ }^{2}$, Sergueï A. Nazarov ${ }^{3}$

submitted: 17 Mar 2000

1 Weierstraß-Institut
für Angewandte Analysis und Stochastik
Mohrenstraße 39
D-10117 Berlin, Germany
E-Mail: hinder@wias-berlin.de

2 Technische Universität Darmstadt
Fachbereich Mathematik
Schloßgartenstraße 7
D - 64289 Darmstadt, Germany
E-Mail: meister@mathematik.tu-darmstadt.de

3 Institute of Mechanical Engineering Problems V.O. Bol'shoy pr. 61 Saint Petersburg 199178, Russia E-Mail: serna@snark.ipme.ru

Preprint No. 567
Berlin 2000


1991 Mathematics Subject Classification. 76B05, 35J05, 35B40.
Key words and phrases. Airfoil theory, Joukovskii-Kutta condition, Laplace equation, Helmholtz equation, asymptotic farfield behavior.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
D-10117 Berlin
Germany

Fax: $\quad+49302044975$
E-Mail (X.400): $\quad c=d e ; a=d 400-\mathrm{gw} ; \mathrm{p}=$ WIAS-BERLIN; $\mathrm{s}=$ preprint
E-Mail (Internet): preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/


#### Abstract

We investigate the behavior at infinity of solutions to Joukovskii-Kuttatype problems, arising in the linearized lifting surface theory. In these problems one looks for the perturbation velocity potential induced by the presence of a wing in a basic flow within the scope of a linearized theory and for the wing circulation. We consider at first the pure two-dimensional case, then the three-dimensional case, and finally we show in the case of a time-harmonically oscillating wing in $\mathbb{R}^{3}$ in a weakly damping gas the exponential decay of solutions of the Joukovskii-Kutta problem.


## 1 Introduction

In this article we consider within the scope of a linearized theory problems for a perturbation velocity potential $\Phi$ which is generated by the presence of a wing of an aeroplane in a basic flow:

$$
\text { Total potential }=\text { potential without wing }+\underbrace{\text { perturbation potential } \Phi}_{"_{\text {small }}} .
$$

For describing these problems we denote by $x=(y, z)=\left(y_{1}, y_{2}, z\right) \in \mathbb{R}^{3}$ a point in the three-dimensional space $\mathbb{R}^{3}$. We assume, that an inviscid, barotropic, and compressible gas flows with a constant subsonic velocity into the positive $y_{1}$-direction and that the wing as an obstacle is thin and weakly cambered.
Let $L$ denote the projection of the wing onto the $y$-plane and $\Pi:=\{(y, z): z=$ $\left.0,-l<y_{2}<l\right\}$ the strip which contains $L$ and is of minimal width. We assume $L$ to be of a trapezoidal shape, i.e.,

$$
\bar{L}=\left\{(y, z): z=0, y_{2} \in[-l, l],-Y_{-}\left(y_{2}\right) \leq y_{1} \leq Y_{+}\left(y_{2}\right) \text { for } y_{2} \in[-l, l]\right\}
$$

where $-Y_{-}\left(y_{2}\right), Y_{+}\left(y_{2}\right), y_{2} \in(-l, l)$ denote parametrizations of the leading edge $-Y_{-}$, respectively the trailing edge $Y_{+}$of $L$, with smooth functions $Y_{ \pm}$. Especially $Y\left(y_{2}\right)=Y_{-}\left(y_{2}\right)+Y_{+}\left(y_{2}\right)$ is assumed to be positive for all $y_{2} \in[-l, l]$.
The set $\Pi \backslash \bar{L}$ is double-connected. The wake $W$ is defined by $W:=\{(y, z) \in \Pi$ : $\left.y_{1}>Y_{+}\left(y_{2}\right), y_{2} \in(-l, l)\right\} \subset \Pi \backslash \bar{L}$.

Reissner [15] formulated 1949 boundary conditions for the perturbation potential $\Phi$ which has to be looked for in $\Omega=\mathbb{R}^{3} \backslash \overline{L \cup W}$. These conditions have been reformulated 1983 by Meister [11] in a mathematically more handable model in the two-dimensional situation. Especially Meister considered a time-harmonically oscillating wing with reduced wavenumber $k$ under the assumption of a weakly damping gas, i.e., Re $k>0, \operatorname{Im} k>0$. The resulting model has been extended 1988 by Hebeker [5] under Meister's assumption of a weakly damping gas to the threedimensional situation and has been investigated in [6], [12], [13] in more detail.

The full problem is: Find the perturbation velocity potential $\Phi$ as the solution of the problem

$$
\begin{align*}
\left(\triangle_{x}+k^{2}\right) \Phi(x) & =0 \text { for } x \in \Omega, \operatorname{Re} k>0, \operatorname{Im} k>0 \\
\partial_{z} \Phi(y, \pm 0) & =g_{ \pm}(y) \text { for } y \in L \\
{[\Phi](y) } & =\Gamma\left(y_{2}\right) \exp \left(i k M^{-1}\left(y_{1}-Y_{+}\left(y_{2}\right)\right)\right) \text { for } y \in W  \tag{1.1}\\
{\left[\partial_{z} \Phi\right](y) } & =0 \text { for } y \in W
\end{align*}
$$

Here $g_{ \pm}$denote prescribed functions defined on $L$ which results from the requirement of vanishing total normal velocities on the wing and which we assume to be smooth, $M$ is the Machnumber (here: $M<1$ ), and $\Gamma$ denotes the wing circulation as a function defined on the trailing edge $Y_{+}$of $L$ where we agree upon $[\Phi]=\Phi(y,-0)-$ $\Phi(y,+0)$. In the full Joukovskii-Kutta problem, besides $\Phi$ also $\Gamma$ has to be found by the requirement of vanishing intensity factors of $\Phi$ at the borderline $Y_{+}$between $L$ and $W$.
We assume here that $\Gamma \in H^{1 / 2}\left(Y_{+}\right)$is prescribed. This assumption is consistent with the results [12], [13], which prove $\Gamma$ to be a continuous function even in interior angular points of the trailing edge $Y_{+}$of $L$ and to possess singularities of the order $O\left(\sqrt{l-\left|y_{2}\right|}\right)$ at the endpoints of $Y_{+}$.
We focus here in finding the asymptotic behavior of the solution $\Phi$ of (1.1) at infinity. We consider at first in section 2 the two-dimensional case with $k=0$. Here, $L$ is an interval $\left(-a_{-}, a_{+}\right)$where we assume $0 \in\left(-a_{-}, a_{+}\right)$and $W=\left(a_{+}, \infty\right)$. In this situation the problem (1.1) reduces to the following one:

$$
\begin{align*}
\triangle_{\left(y_{1}, z\right)} \Phi\left(y_{1}, z\right)= & 0 \text { for }\left(y_{1}, z\right) \in \mathbb{R}^{2} \backslash\left[-a_{-}, \infty\right), \\
\partial_{z} \Phi\left(y_{1}, \pm 0\right)= & g_{ \pm}\left(y_{1}\right) \text { for } y_{1} \in L  \tag{1.2}\\
{[\Phi]\left(y_{1}\right)=\Gamma \text { for } y_{1} \in W, } & {\left[\partial_{z} \Phi\right]\left(y_{1}\right)=0 \text { for } y_{1} \in W }
\end{align*}
$$

where $\Gamma$ is a constant.
In section 3 we consider the three-dimensional case with $k=0$, i.e., we look for the asymptotic behavior of solutions of the problem

$$
\begin{align*}
\triangle_{x} \Phi(x)= & 0 \text { for } x \in \Omega \\
\partial_{z} \Phi(y, \pm 0)= & g_{ \pm}(y) \text { for } y \in L,  \tag{1.3}\\
{[\Phi](y)=\Gamma\left(y_{2}\right) \text { for } y \in W, } & {\left[\partial_{z} \Phi\right](y)=0 \text { for } y \in W . }
\end{align*}
$$

Finally we prove in section 4 the exponential decay for solutions $\Phi$ of the problem (1.1) in the case of a time-harmonically oscillating wing with $\operatorname{Re} k>0, \operatorname{Im} k>0$, i.e., for a weakly damping gas.

## 2 The two-dimensional case with a vanishing wavenumber

In this section we present the asymptotic formula for solutions $\Phi$ of (1.2) at infinity. By virtue of (1.2) ${ }_{3}$, a solution $\Phi$ of (1.2) cannot decay at infinity for $\Gamma \neq 0$. The case $\Gamma=0$ can be neglected by physical reasons. Hence, (1.2) possesses no solution in the Sobolev space $W_{2}^{1}\left(\mathbb{R}^{2} \backslash\left[-a_{-}, \infty\right)\right)$.
We now want to reduce (1.2) to a problem with a compactly supported right-hand side. To do this, we use polar coordinates $(r, \varphi)$, centered in the point $(0,0)$ with $r=\sqrt{y_{1}^{2}+z^{2}}, \varphi=0$ for $z=0, y_{1}>0$ and a cut-off function $\chi \in C_{0}^{\infty}(\mathbb{R})$ with $\chi(r)=1$ for $r$ sufficiently small and $\chi(r)=0$ for $r>\min \left\{a_{-}, a_{+}\right\}$.

THEOREM 2.1 There exists a solution $\Phi$ of (1.2) which possesses for $r \longrightarrow \infty$ the representation

$$
\begin{equation*}
\Phi\left(y_{1}, z\right)=(1-\chi(r))\left(\frac{1}{2 \pi} \int_{-a_{-}}^{a_{+}}\left(g_{+}\left(y_{1}\right)-g_{-}\left(y_{1}\right)\right) d y_{1} \cdot \ln \frac{1}{r}+c+\frac{\Gamma}{2 \pi} \varphi\right)+O\left(r^{-1}\right) \tag{2.1}
\end{equation*}
$$

where $c$ denotes an arbitrary constant. Any solution fulfilling the relation $\Phi\left(y_{1}, z\right)=$ $o(1+r)$ takes the form (2.1).

Proof. Let us perform in (1.2) the substitution

$$
\begin{equation*}
\Phi\left(y_{1}, z\right)=(1-\chi(r))\left(\frac{\mathbf{a}}{2 \pi} \ln \frac{1}{r}+\mathbf{c}+\frac{\Gamma}{2 \pi} \varphi\right)+\Phi^{0}\left(y_{1}, z\right) \tag{2.2}
\end{equation*}
$$

with an arbitrary constant $\mathbf{c}$ and an unknown constant a which has to be fixed. $\Phi^{0}$ is also unknown. Note that the first term in the second factor in (2.2) covers all harmonic functions which grow at infinity not faster than $o(1+r)$, the second term is constant, and the third term takes care of the jump of $\Phi$ on the wake $\left(a_{+}, \infty\right)$.

Defining

$$
\begin{equation*}
[\triangle, \chi](\psi)=\triangle(\chi \cdot \psi)-\chi \cdot \triangle \psi \tag{2.3}
\end{equation*}
$$

where confusions with the jumps of functions are excluded, and the compactly supported function $f$ by

$$
\begin{equation*}
f\left(y_{1}, z\right)=\left[\triangle_{x}, \chi(r)\right]\left(\frac{\mathbf{a}}{2 \pi} \ln \frac{1}{r}+\mathbf{c}+\frac{\Gamma}{2 \pi} \varphi\right) \tag{2.4}
\end{equation*}
$$

we arrive at the following problem for $\Phi^{0}$ :

$$
\begin{gather*}
\triangle_{\left(y_{1}, z\right)} \Phi^{0}\left(y_{1}, z\right)=f\left(y_{1}, z\right) \text { for }\left(y_{1}, z\right) \in \mathbb{R}^{2} \backslash\left[-a_{-}, \infty\right) \\
\partial_{z} \Phi^{0}\left(y_{1}, \pm 0\right)=g_{ \pm}\left(y_{1}\right)+(1-\chi(r)) \frac{\Gamma}{2 \pi r} \text { for } y_{1} \in\left(-a_{-}, a_{+}\right),  \tag{2.5}\\
{\left[\partial_{z} \Phi^{0}\right]\left(y_{1}\right)=\left[\Phi^{0}\right]\left(y_{1}\right)=0 \text { for } y_{1}>a_{+}}
\end{gather*}
$$

It is wellknown (e.g. [4]) that problem (2.5) possesses a solution $\Phi^{0}$ which vanishes at infinity if and only if the compatibility condition

$$
\begin{equation*}
\quad \int f\left(y_{1}, z\right) d y_{1} d z+\sum_{ \pm} \mp \int_{-a_{-}}^{a_{+}}\left(g_{ \pm}\left(y_{1}\right)+(1-\chi(r)) \frac{\Gamma}{2 \pi y_{1}}\right) d y_{1}=0 \tag{2.6}
\end{equation*}
$$

is fulfilled.
Hence we must fix the constant $\mathbf{a}$ in the ansatz (2.2) by condition (2.6). Some simple calculations show

$$
\begin{aligned}
& \quad \int f\left(y_{1}, z\right) d y_{1} d z=\mathbf{a}, \sum_{ \pm} \mp \int_{-a_{-}}^{a_{+}}(1-\chi(r)) \frac{\Gamma}{2 \pi y_{1}} d y_{1}=0 \\
& \mathbb{R}^{2} \backslash\left[-a_{-}, \infty\right)
\end{aligned}
$$

which yields

$$
\mathbf{a}=\sum_{ \pm} \pm \int_{-a_{-}}^{a_{+}} g_{ \pm}\left(y_{1}\right) d y_{1} .
$$

Inserting the last equality into (2.2) proves the assertion.
REMARK 2.2 It is known that only the antisymmetric part of $g_{ \pm}$with respect to the $y_{1}$-axis produces a contribution to the lifting force. The fundamental solution $-(2 \pi)^{-1} \ln r^{-1}$ of the two-dimensional Laplace equation is symmetric and also the constant $\mathbf{c}$. Hence the lifting force appears due to the term $(2 \pi)^{-1} \Gamma \varphi$ in (2.2).

## 3 The three-dimensional case with a vanishing wavenumber

In this section we investigate the asymptotic behavior of solutions $\Phi$ of the problem (1.3) at infinity where we assume the circulation $\Gamma \in H^{1 / 2}(-l, l)$ as being taken for
granted in consistence with the results in [12], [13], mentioned in the introduction. Furthermore, we denote in the rest of this article by $r$ the expression $\sqrt{y_{2}^{2}+z^{2}}$, the polar-radius in planes, perpendicular to the wake.
For finding the asymptotics of $\Phi$ we note at first a tool.

LEMMA 3.1 Let $\Gamma \in H^{1 / 2}(-l, l)$ and define

$$
G:=\mathbb{R}^{2} \backslash\left\{\left(y_{2}, z\right):\left|y_{2}\right| \leq l, z=0\right\} .
$$

The problem

$$
\begin{align*}
\triangle_{\left(y_{2}, z\right)} V\left(y_{2}, z\right)= & 0 \text { in } G, \\
{[V]\left(y_{2}\right)=\Gamma\left(y_{2}\right), } & {\left[\partial_{z} V\right]\left(y_{2}\right)=0 \text { for } y_{2} \in(-l, l), }  \tag{3.1}\\
\left|\nabla_{\left(y_{2}, z\right)}^{\alpha} V\left(y_{2}, z\right)\right| \leq & c r^{-1}-|\alpha| \text { for } r \gg 1, \alpha \in N_{0}^{2}
\end{align*}
$$

possesses in $W_{2}^{1}(G)$ a solution

$$
\begin{equation*}
V\left(y_{2}, z\right)=-\frac{1}{2 \pi} \int_{-l}^{l} \frac{z \Gamma(t)}{\left(y_{2}-t\right)^{2}+z^{2}} d t \tag{3.2}
\end{equation*}
$$

This solution admits at infinity the representation

$$
\begin{equation*}
V\left(y_{2}, z\right)=-\frac{z}{2 \pi r^{2}} \Gamma_{0}+\tilde{V}\left(y_{2}, z\right) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{0}=\int_{-l}^{l} \Gamma\left(y_{2}\right) d y_{2} \tag{3.4}
\end{equation*}
$$

and $\tilde{V}$ satisfies for $r \gg 1$ the estimate

$$
\begin{equation*}
\left|\nabla_{\left(y_{2}, z\right)}^{\alpha} \tilde{V}\left(y_{2}, z\right)\right| \leq c r^{-2-|\alpha|} \quad \forall \alpha \in I N_{0}^{2} \tag{3.5}
\end{equation*}
$$

Proof. That the right-hand side in (3.2) delivers a solution of (3.1) in $W_{2}^{1}(G)$ follows from wellknown results from potential theory (see e.g. [3]) because for the transversal derivative of the fundamental solution of the two-dimensional Laplace equation the following relation holds true:

$$
-\frac{\partial}{\partial z} \frac{1}{2 \pi} \ln \frac{1}{r}=\frac{z}{2 \pi r^{2}}
$$

Finally, (3.3)-(3.5) can be verified by some elementary calculations and estimates.

REMARK 3.2 Due to the jump $\Gamma\left(y_{2}\right)$ in $(3.1)_{2}$, the function $V$ does not belong to $W_{2, l o c}^{1}\left(\mathbb{R}^{2}\right)$. Nevertheless, $V \in L_{2, l o c}\left(\mathbb{R}^{2}\right), \frac{\partial V}{\partial y_{2}} \in L_{2}\left(\mathbb{R}^{2}\right)$ and the function

$$
\begin{equation*}
\left(y_{2}, z\right) \mapsto \partial_{z} V\left(y_{2}, z\right)-\Gamma\left(y_{2}\right) \theta_{l}\left(y_{2}\right) \delta(z) \in L_{2}(G) \tag{3.6}
\end{equation*}
$$

where $\theta_{l}$ denotes the characteristic function of the interval $[-l, l]$, i.e., $\theta_{l}\left(y_{2}\right)=1$ for $\left|y_{2}\right| \leq l$ and $\theta_{l}\left(y_{2}\right)=0$ for $\left|y_{2}\right|>l$. $\delta$ denotes the Dirac functional.
However, in the following it is convenient to ignore the Dirac functional in (3.6) and to regard $\partial_{z} V$ as an element of $L_{2}(G)$.

In order to find out informations about the farfield, we consider two cases. We investigate the behavior of $\Phi$ in a narrow conical neighborhood of the wake $W$, respectively outside of such a neighborhood. For describing a conical neighborhood of $W$ we use as a cut-off function the expression $\left(1-\chi\left(y_{1}\right)\right) \chi\left(r / y_{1}\right)$ where $\chi$ is a cut-off function similar to that introduced at the beginning of section 2 and we shall specify $\Phi$ in the form

$$
\begin{equation*}
\Phi(x)=\left(1-\chi\left(y_{1}\right)\right) \chi\left(r / y_{1}\right) V\left(y_{2}, z\right)+\tilde{\Phi}(x) \tag{3.7}
\end{equation*}
$$

THEOREM 3.3 Let $\rho=\sqrt{y_{1}^{2}+y_{2}^{2}+z^{2}}$. Then the representation (3.7) of the solutions $\Phi$ of (1.3) takes inside the conical neighborhood of $W$, i.e., in the region where $\left(1-\chi\left(y_{1}\right)\right) \chi\left(r / y_{1}\right)=1$ the form

$$
\begin{equation*}
\Phi(x)=-\frac{1}{2 \pi} \int_{-l}^{l} \frac{z \Gamma(t)}{\left(y_{2}-t\right)^{2}+z^{2}} d t+O\left(\rho^{-1}\right) \text { for } \rho \longrightarrow \infty \tag{3.8}
\end{equation*}
$$

Outside of this cone the expansion

$$
\begin{equation*}
\Phi(x)=\frac{1}{4 \pi \rho} \int_{L}\left(g_{+}(y)-g_{-}(y)\right) d y+\frac{\Gamma_{0} z}{4 \pi r^{2}}\left(1+\frac{y_{1}}{\rho}\right)+O\left(\rho^{-2} \ln \rho\right) \text { for } \rho \longrightarrow \infty \tag{3.9}
\end{equation*}
$$

holds true.

Proof. Performing the substitution (3.7) in (1.3) ${ }_{1}$ we obtain according to (1.3) 3 the equation

$$
\begin{equation*}
\triangle_{x} \tilde{\Phi}(x)=-\left[\triangle_{x},\left(1-\chi\left(y_{1}\right)\right) \chi\left(r / y_{1}\right)\right] V\left(y_{2}, z\right) \text { in } \Omega \tag{3.10}
\end{equation*}
$$

as the equation for $\tilde{\Phi}$.
(3.3) and (3.5) ensure the right-hand side $F$ in (3.10) to take the form

$$
\begin{equation*}
F(x)=\left(1-\chi\left(y_{1}\right)\right)\left[\triangle_{x}, \chi\left(\frac{r}{y_{1}}\right)\right] \frac{\Gamma_{0} z}{2 \pi r^{2}}+\tilde{F}(x) \tag{3.11}
\end{equation*}
$$

with

$$
\begin{equation*}
\left|\nabla_{x}^{\alpha} \tilde{F}(x)\right| \leq c \rho^{-4-|\alpha|} \forall \alpha \in I N_{0}^{3} \tag{3.12}
\end{equation*}
$$

Denoting by $(\rho, \theta)=\left(\rho, \theta_{1}, \theta_{2}\right)$ spherical coordinates where $\theta$ belongs to the unit sphere $S^{2} \subset \mathbb{R}^{3}$ we can prove by elementary calculations the identity

$$
\begin{equation*}
-\left[\triangle_{x}, \chi\left(\frac{r}{y_{1}}\right)\right] \frac{z}{2 \pi r^{2}}=\rho^{-3} h(\theta) \tag{3.13}
\end{equation*}
$$

where $h \in C^{\infty}\left(S^{2}\right)$. Hence, (3.10), (3.11), (3.12), [7], [10], and [14, Theorems 3.5.6 and 3.5.12] yields $\tilde{\Phi}$ to possess a representation of the form

$$
\begin{equation*}
\tilde{\Phi}(x)=\frac{1}{\rho}\left(\frac{a}{4 \pi}+\Gamma_{0}(b \ln \rho+\Psi(\theta))\right)+\Phi^{*}(x) \tag{3.14}
\end{equation*}
$$

where $\Phi^{*}$ satisfies the estimate

$$
\begin{equation*}
\left|\nabla_{x}^{\alpha} \Phi^{*}(x)\right| \leq c(\alpha) \rho^{-2-|\alpha|} \ln \rho \forall \alpha \in I N_{0}^{3} \tag{3.15}
\end{equation*}
$$

Here, $a$ and $b$ denote unknown constants and $\Psi$ and $b$ are coupled by the equation

$$
\begin{equation*}
\tilde{\triangle}_{\theta} \Psi(\theta)=h(\theta)-b, \theta \in S^{2} \tag{3.16}
\end{equation*}
$$

with the Beltrami-Laplace operator $\tilde{\triangle}_{\theta}$. Especially, $a$ depends on the whole data of the problem (1.3).
Let us comment (3.14). Since $\tilde{\triangle}_{\theta}$ is a formally self-adjoint differential operator and $\tilde{\triangle}_{\theta} w(\theta)=0$ yields $w=$ const, due to results coming up from the Fredholm theory, the compatibility condition

$$
\begin{equation*}
\int_{S^{2}}(h(\theta)-b) d s_{\theta}=0, \text { i.e., } b=\frac{1}{4 \pi} \int_{S^{2}} h(\theta) d s_{\theta} \tag{3.17}
\end{equation*}
$$

has to hold. This formula would enable us to calculate $b$. However, we shall show by using an other method that $b$ vanishes. Especially we want to avoid in the following to fix $\Psi$ by solving (3.16). Finally we can calculate $a$ using the weight function technique (e.g. [2], [10]).

The fact $b=0$ proves of course (3.8) by reason of (3.7), (3.2), (3.14), (3.15) and the smoothness of $\Psi$.
At the same time, (3.14) indicates the behavior of $\Phi$ outside a narrow conical neighborhood of $W$. We choose a function $\Upsilon$ which is harmonic in $\mathbb{R}^{3} \backslash\left\{x: r=0, y_{1} \geq 0\right\}$ such that

$$
\begin{equation*}
u(x)=\left(1-\chi\left(y_{1}\right)\right)\left(\Upsilon(x)-\frac{1}{2 \pi} \chi(r) \frac{z}{r^{2}}\right) \tag{3.18}
\end{equation*}
$$

leaves an additional discrepency which has to be compensated by a solution of a problem similar to (3.1). The solution $v$ of this problem, which takes care both
on the jump $\Gamma$ and the above-mentioned discrepancy decays suitable for $r \longrightarrow \infty$ which ensures, that the main term (3.13) in (3.11) disappears. Collecting all these facts will yield the representation

$$
\begin{equation*}
\Phi(x)=-\Gamma_{0} u(x)+\left(1-\chi\left(y_{1}\right)\right) \chi\left(\frac{r}{y_{1}}\right) v\left(y_{2}, z\right)+\Phi^{* *}(x) \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi^{* *}(x)=\frac{a}{4 \pi \rho}+O\left(\rho^{-2} \ln \rho\right) \tag{3.20}
\end{equation*}
$$

We define the desired function $\Upsilon$ by

$$
\begin{equation*}
\Upsilon(x)=\frac{1}{4 \pi} \int_{0}^{\infty} \frac{z}{\left(r^{2}+\left(t-y_{1}\right)^{2}\right)^{3 / 2}} d t=\frac{z}{4 \pi r^{2}}\left(1+\frac{y_{1}}{\rho}\right) \tag{3.21}
\end{equation*}
$$

Note that the integrand in (3.21) is just the derivative with respect to $z$ of the three-dimensional fundamental solution of the Laplace equation. Therefore, $\Upsilon$ is a harmonic function in $\mathbb{R}^{3} \backslash\left\{x: r=0, y_{1} \geq 0\right\}$. Moreover, $\Upsilon(x)-\frac{z}{2 \pi r^{2}}$ is a smooth function in the cylinder $\left\{x: r \leq r_{0}, y_{1} \geq c_{0}\right\}$ where $r_{0}, c_{0}$ denote positive numbers.

Because

$$
\begin{equation*}
\triangle u(x)=-\frac{1}{2 \pi}\left(1-\chi\left(y_{1}\right)\right)\left[\triangle_{\left(y_{2}, z\right)}, \chi(r)\right] \frac{z}{r^{2}}+g(x) \tag{3.22}
\end{equation*}
$$

with a function $g \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, we consider

$$
\begin{gather*}
\triangle_{\left(y_{2}, z\right)^{v}\left(y_{2}, z\right)}=-\frac{A}{2 \pi}\left[\triangle_{\left(y_{2}, z\right)}, \chi(r)\right] \frac{z}{r^{2}} \text { in } G  \tag{3.23}\\
{[v]\left(y_{2}\right)=\Gamma\left(y_{2}\right),\left[\partial_{z} v\right]\left(y_{2}\right)=0 \text { for } y_{2} \in(-l, l)}
\end{gather*}
$$

as the problem for $v$. Here $A$ denotes an unknown constant which we have to choose lateron.
There exists a solution $v$ of (3.23) with the following behavior at infinity:

$$
\begin{align*}
v\left(y_{2}, z\right)= & \frac{\beta}{2 \pi} \ln \frac{1}{r}+\mathrm{const}-\frac{\gamma z}{2 \pi r^{2}}-\frac{\delta y_{2}}{2 \pi r^{2}}+\tilde{v}\left(y_{2}, z\right)  \tag{3.24}\\
& \left|\nabla_{\left(y_{2}, z\right)}^{\alpha} \tilde{v}\left(y_{2}, z\right)\right| \leq c(\alpha) r^{-2}-|\alpha|
\end{align*}
$$

Next, we fix the constants $A, \beta, \gamma$, and $\delta$. To this end, we insert $v$ and the linear function

$$
\Lambda\left(y_{2}, z\right)=\Lambda_{0}+\Lambda_{1} y_{2}+\Lambda_{2} z
$$

into the $2^{\text {nd }}$ Greens formula, where we integrate over the ball $B_{R}=\left\{\left(y_{2}, z\right): r<\right.$ $R\}$ with some radius $R>0$ such that $\chi \equiv 0$ on $\partial B_{R}$. We obtain the equation

$$
\begin{equation*}
I_{3}=I_{1}+I_{2} \tag{3.25}
\end{equation*}
$$

where

$$
\begin{gather*}
I_{1}=\int_{\partial B_{R}}\left(\Lambda \frac{\partial v}{\partial r}-v \frac{\partial \Lambda}{\partial r}\right) d s \\
I_{2}=\sum_{ \pm} \mp \int_{-l}^{l}\left(\Lambda\left(y_{2}, 0\right) \frac{\partial v}{\partial z}\left(y_{2}, \pm 0\right)-v\left(y_{2}, \pm 0\right) \frac{\partial \Lambda}{\partial z}\left(y_{2}, 0\right)\right) d y_{2}  \tag{3.26}\\
I_{3}=\int_{B_{R}}(\Lambda \cdot \Delta v-v \cdot \Delta \Lambda) d y_{2} d z
\end{gather*}
$$

Some elementary calculations show that $I_{1}=-\beta \Lambda_{0}+\delta \Lambda_{1}+\gamma \Lambda_{2}+o(1)$ for $R \longrightarrow \infty$ and on account of $(3.23)_{2}, I_{2}=\Gamma_{0} \cdot \Lambda_{2}$ holds true. Finally, if we choose a ball of a radius $\varepsilon$ such that $\chi \equiv 1$ on $\partial B_{\varepsilon}$ we observe

$$
\begin{aligned}
I_{3}=- & -\frac{A}{2 \pi} \int_{B_{R}} \Lambda\left[\triangle_{\left(y_{2}, z\right)}, \chi(r)\right] \frac{z}{r^{2}} d y_{2} d z=-\frac{A}{2 \pi} \int_{R} \backslash B_{\varepsilon} \Lambda \triangle_{\left(y_{2}, z\right)} \frac{z}{r^{2}} d y_{2} d z \\
& =\left.\frac{A}{2 \pi} \varepsilon \int_{0}^{2 \pi}\left(\Lambda\left(y_{2}, z\right) \frac{\partial}{\partial r} \frac{z}{r^{2}}-\frac{z}{r^{2}} \frac{\partial}{\partial r} \Lambda\left(y_{2}, z\right)\right)\right|_{r=\varepsilon} d \varphi=-A \cdot \Lambda_{2}
\end{aligned}
$$

where $\varphi$ denotes the argument of polar coordinates. Inserting these results into (3.25) and passing to the limit $R \longrightarrow \infty$ yields $\beta=\delta=0$ and if we choose $A=-\Gamma_{0}$, also $\gamma=0$ holds true.
Searching $\Phi$ now in the form of (3.19) yields just

$$
\begin{equation*}
\triangle_{x} \Phi^{* *}(x)=-\left[\triangle_{x}, \chi\left(r / y_{1}\right)\right] v\left(y_{2}, z\right)+\tilde{F}(x) \tag{3.27}
\end{equation*}
$$

as the problem for $\Phi^{* *}$ where $\tilde{F}$ is compactly supported and due to (3.24) with $\beta=\gamma=\delta=0$

$$
\left|\nabla_{x}^{\alpha}\left[\triangle_{x}, \chi\left(r / y_{1}\right)\right] v\left(y_{2}, z\right)\right| \leq c(\alpha) \rho^{-4-|\alpha|}
$$

A comparison of the last results with (3.14), (3.15), respectively, verifies the identity (3.20) and proves the constant $b$ in (3.14) to vanish.

Finally, we have to calculate the constant $a$ in the representation (3.19) for $\Phi$ which appears from the presence of $\Phi^{* *}$. We use the weight-function technique with the weight-function $\mathbf{1}$, where $1(x)=1 \forall x \in \mathbb{R}^{3}$. The idea is, to insert $\Phi$ and $\mathbf{1}$ into the $2^{\text {nd }}$ Greens formula where we integrate over the ball $\mathbf{B}_{R}=\left\{x \in \mathbb{R}^{3}: \rho<R\right\}$ and then we pass to the limit $R \longrightarrow \infty$ which yields an algebraic equation in $a$. Using (1.3) $2,(1.3)_{3}$ and $y_{1}=\rho \sin \theta_{1} \cos \theta_{2}, y_{2}=\rho \sin \theta_{1} \cos \theta_{2}$ and $z=\rho \cos \theta_{1}$, we obtain the identity

$$
\begin{gathered}
0=\int_{\mathbf{B}_{R}}(\triangle \Phi-\Phi \triangle \mathbf{1}) d x=\int_{\partial \mathbf{B}_{R}} \frac{\partial \Phi}{\partial n} d o+\int_{L}\left(g_{+}(y)-g_{-}(y)\right) d y \\
=\int_{\partial \mathbf{B}_{R}} \frac{\partial}{\partial n}\left(\frac{a}{4 \pi \rho}+\frac{\Gamma_{0}}{4 \pi} \frac{z}{r^{2}}\left(1+\frac{y_{1}}{\rho}\right)\right) d o+\int_{L}\left(g_{+}(y)-g_{-}(y)\right) d y+o(1) \\
=\left.R^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta_{1} \frac{\partial}{\partial \rho}\left(\frac{a}{4 \pi \rho}+\frac{\Gamma_{0}}{4 \pi} \frac{z}{r^{2}}\left(1+\frac{y_{1}}{\rho}\right)\right)\right|_{\rho=R} d \theta_{1} d \theta_{2} \\
+\int_{L}\left(g_{+}(y)-g_{-}(y)\right) d y+o(1) \\
=\int_{0}^{2 \pi} \int_{0}^{\pi}-\frac{a}{4 \pi} \sin \theta_{1}-\frac{\Gamma_{0}}{4 \pi} \frac{\sin \theta_{1} \cos \theta_{1}+\sin ^{2} \theta_{1} \cos \theta_{1} \cos \theta_{2}}{1-\sin ^{2} \theta_{1} \cos ^{2} \theta_{2}} d \theta_{1} d \theta_{2} \\
+\int_{L}\left(g_{+}(y)-g_{-}(y)\right) d y+o(1)
\end{gathered}
$$

Because $\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{a}{4 \pi} \sin \theta_{1} d \theta_{1} d \theta_{2}=a$ and because

$$
\int_{0}^{\pi} \frac{\sin \theta_{1} \cos \theta_{1}+\sin ^{2} \theta_{1} \cos \theta_{1} \cos \theta_{2}}{1-\sin ^{2} \theta_{1} \cos ^{2} \theta_{2}} d \theta_{1}=0
$$

holds true due to symmetry properties of the integrand with respect to the point $\pi / 2$, we obtain immediately that

$$
a=\int_{L}\left(g_{+}(y)-g_{-}(y)\right) d y
$$

which proves (3.9).

## 4 The three-dimensional case with a weakly damping gas

In this section we investigate the asymptotic behavior of solutions $\Phi$ of (1.1) at infinity, assuming a weakly damping gas, i.e., $\operatorname{Re} k, \operatorname{Im} k>0$ and show an exponential decay of $\Phi$. Here we concentrate to the three-dimensional situation while in the two-dimensional case only some simplifications occur.
Again, based on [12], [13] we assume $\Gamma \in H^{1 / 2}(-l, l)$ as being taken for granted.
Now we present the weak formulation of the problem (1.1). Let $\chi \in C^{\infty}\left(\mathbb{R}^{3}\right)$ be a cut-off function such that $\chi \equiv 1$ in a neighborhood of $\bar{W}$ and $\chi(x)=0$ for $y_{2}^{2}+z^{2}>R^{2}, y_{1}<-R$, respectively with some large number $R>0$. Moreover, we assume $\chi$ to be independent of $y_{1}$ for $y_{1}>R$.

We make the ansatz

$$
\begin{equation*}
\Phi(x)=u(x)-\chi(x) V\left(y_{2}, z\right) E(y) \tag{4.1}
\end{equation*}
$$

where $V$ denotes the solution (3.2) of (3.1) and $E(y)$ is the exponential factor in $(1.1) 3$.
Performing the substitution (4.1) in (1.1) and multiplying the transformed equation $(1.1)_{1}$ by a test function $v \in W_{2}^{1}(\Omega)$ we obtain after an integration by parts using the transformed boundary conditions $(1.1)_{2}-(1.1)_{4}$ the integral identity

$$
\begin{align*}
& (\nabla u, \nabla v)_{\Omega}-k^{2}(u, v)_{\Omega}=\left(g_{+}, v\right)_{L_{+}}-\left(g_{-}, v\right)_{L_{-}}  \tag{4.2}\\
& -(\nabla \chi V E, \nabla v)_{\Omega}+k^{2}(\chi V E, v)_{\Omega} \forall v \in W_{2}^{1}(\Omega)
\end{align*}
$$

as the weak formulation of the problem for $u$. Here $(\cdot, \cdot)_{\Omega}$ denotes the scalar product in $L_{2}(\Omega)$.
The following proposition holds true:
PROPOSITION 4.1 The problem (4.2) possesses an unique solution $u \in W_{2}^{1}(\Omega)$. Moreover, the estimate

$$
\begin{equation*}
\left\|u ; W_{2}^{1}(\Omega)\right\| \leq c \cdot N \tag{4.3}
\end{equation*}
$$

is valid where

$$
\begin{equation*}
N:=\left(\sum_{ \pm}\left\|g_{ \pm} ; L_{2}(L)\right\|+\left\|\Gamma ; H^{1 / 2}(-l, l)\right\|\right) \tag{4.4}
\end{equation*}
$$

Proof. For proving the assertion we only have to verify the assumptions of the LaxMilgram theorem. The integrals in the right-hand side of (4.2) exists by reason of the exponential decay of $E$ and this right-hand side represents a continuous linear functional in $v$ which acts on $W_{2}^{1}(\Omega)$. Furthermore, owing to the above mentioned conditions $\operatorname{Re} k, \operatorname{Im} k>0$, one can show by some elementary calculations the existence of constants $c>0, \delta_{k}>0$ such that

$$
\begin{equation*}
\left|(\nabla u, \nabla u)_{\Omega}-k^{2}(u, u)_{\Omega}\right| \geq c\left\|\nabla u ; L_{2}(\Omega)\right\|^{2}+\delta_{k}\left\|u ; L_{2}(\Omega)\right\|^{2} \tag{4.5}
\end{equation*}
$$

holds true. Clearly, the corresponding bilinearform is continuous. Hence, the application of the usual Lax-Milgram technique proves the assertion.
Finally we show $u$ to decay exponentially. We formulate this result in the following proposition.

PROPOSITION 4.2 Let $u$ satisfy the identity (4.2) for all compactly supported functions $v \in W_{2}^{1}(\Omega)$ and for some small number $\tau_{-}>0$ the inclusion

$$
\begin{equation*}
e^{-\tau_{-} \sqrt{1+\rho^{2}}} u \in W_{2}^{1}(\Omega) \tag{4.6}
\end{equation*}
$$

where $\rho=|x|$. Then there exists a number $\tau_{0}>0$ such that for $\tau_{-} \in\left(0, \tau_{0}\right)$ the inclusion

$$
\begin{equation*}
e^{\tau_{+} \sqrt{1+\rho^{2}}} u \in W_{2}^{1}(\Omega) \forall \tau_{+} \in\left(0, \tau_{0}\right) \tag{4.7}
\end{equation*}
$$

is valid. Moreover, there exists a constant $c>0$ such that the estimate

$$
\begin{equation*}
\left(\left\|e^{\tau_{+} \sqrt{1+\rho^{2}}} \nabla u ; L_{2}(\Omega)\right\|^{2}+\delta_{k}\left\|e^{\tau_{+} \sqrt{1+\rho^{2}}} u ; L_{2}(\Omega)\right\|^{2}\right)^{1 / 2} \leq c N \tag{4.8}
\end{equation*}
$$

holds true. Here $\delta_{k}$ denotes the constant introduced in (4.5).
Proof. It is trivial that the solution $u \in W_{2}^{1}(\Omega)$ fulfills the weaker asymptotic assumption (4.6). By proving (4.7), we show $u$ to be also unique assuming the asymptotic behavior described by (4.6). In fact, for a small number $\tau_{-}>0, u$ is allowed to possess an exponentially growth at infinity.
Taking (4.6) into consideration, the integral identity (4.2) holds still true for exponentially decaying test functions $v$ such that

$$
\exp \left(\tau_{-} \sqrt{1+\rho^{2}}\right) v \in W_{2}^{1}(\Omega)
$$

by reason of completion arguments. Especially, we choose

$$
\begin{equation*}
v=R_{T}^{2} u \in W_{2}^{1}(\Omega) \tag{4.9}
\end{equation*}
$$

where the weight factor $R_{T}$ is defined by

$$
R_{T}(\rho)=\left\{\begin{array}{l}
\exp \left(\tau_{+} \sqrt{1+\rho^{2}}\right) \text { for } \rho<T  \tag{4.10}\\
\exp \left(\left(\tau_{+}+\tau_{-}\right) \sqrt{1+T^{2}}\right) \exp \left(-\tau_{-} \sqrt{1+\rho^{2}}\right) \text { for } \rho>T
\end{array}\right.
$$

Here, $\tau_{+}$denote a small positive number which has to be characterized in more detail and $T$ is a positive parameter which is scheduled to tend to infinity. Note that $R_{T}$ is a piecewise smooth function on $\mathbb{R}^{2}$ and that $\nabla R_{T} \in L_{\infty, l o c}\left(\mathbb{R}^{2}\right)$. Furthermore, the estimate

$$
\begin{equation*}
\left|\nabla R_{T}(\rho)\right| \leq c \max \left\{\tau_{+}, \tau_{-}\right\} R_{T}(\rho) \tag{4.11}
\end{equation*}
$$

is valid with some constant $c>0$, independent of $T$ and $\rho$.
Performing the substitution (4.9), (4.2) takes the form

$$
\begin{equation*}
\left(R_{T} \nabla u, R_{T} \nabla u\right)_{\Omega}-k^{2}\left(R_{T} u, R_{T} u\right)_{\Omega}+2\left(R_{T} \nabla u, u \nabla R_{T}\right)=I_{T}(u) \tag{4.12}
\end{equation*}
$$

with

$$
\begin{align*}
I_{T}(u)= & \sum_{ \pm} \pm\left(R_{T} g_{ \pm}, R_{T} u\right)_{L}+k^{2}\left(R_{T} \chi V E, R_{T} u\right)_{\Omega}  \tag{4.13}\\
& -\left(R_{T} \nabla \chi V E, R_{T} \nabla u\right)_{\Omega}-2\left(R_{T} \nabla \chi V E, u \nabla R_{T}\right)_{\Omega}
\end{align*}
$$

If $\tau_{+}<M^{-1} \operatorname{Im} k$ with the Machnumber $M$, the integrals in the right-hand side $I_{T}(u)$ of (4.12) converge by reason of the rate of decay of $E$ and $I_{T}(u)$ admits the estimate

$$
\left|I_{T}(u)\right| \leq c N \cdot\|\mid u\|_{T}
$$

where

$$
\begin{equation*}
\|\mid u\|\left\|^{2}=\right\| R_{T} \nabla u ; L_{2}(\Omega)\left\|^{2}+\delta_{k}\right\| R_{T} u ; L_{2}(\Omega) \|^{2} \tag{4.14}
\end{equation*}
$$

and where the constant $c>0$ depends neither on $T$ nor on $u$. Furthermore, by virtue of (4.11), the third term in the left-hand side of (4.12) satisfies the inequality

$$
2\left|\left(R_{T} \nabla u, u \nabla R_{T}\right)_{\Omega}\right| \leq 2 c \max \left\{\tau_{+}, \tau_{-}\right\}\| \| u \|\left.\right|_{T} ^{2}
$$

Hence, (4.12) and some simple calculations similar to those which led us to (4.5) yield

$$
\left.\left\|\|u\|_{T}^{2}-2 c \max \left\{\tau_{+}, \tau_{-}\right\}\right\|\|u\|\right|_{T} ^{2} \leq c N\| \| u \|\left.\right|_{T}
$$

Finally, if we choose $\tau_{0}>\max \left\{\tau_{+}, \tau_{-}\right\}$sufficiently small, we obtain the estimate

$$
\begin{equation*}
\left\|\|u\|_{T} \leq 2 c N\right. \tag{4.15}
\end{equation*}
$$

The function $T \mapsto\left\|\|u\|_{T}\right.$ is by reason of (4.10) and (4.14) monotone increasing and the limit of this function is for $T \longrightarrow+\infty$ just the left-hand side of (4.8). Hence, (4.8) results from (4.15) and the convergence of the integrals in the left-hand side of (4.8) verifies the exponential decay of $u$, i.e., (4.7).

## References

[1] R.L. Bisplinghoff, H. Ashley and R.L. Halfman, Aeroelasticity, Addison Wesley Publishing Company, Massachusetts, 1957.
[2] H.F. Bueckner, A novel principle for the computation of stress intensity factors, Z. Angew. Math. Mech., 50(1970), 529-546.
[3] M. Costabel and E.P. Stephan, A direct boundary equation method for transmission problems, J. Math. Anal. Appl., 106(1985), 367-413
[4] R. Courant and D. Hilbert, Methods of mathematical physics, vol. II, Interscience publishers, 1962.
[5] F.C. Hebeker, Report for the VW-project "Mathematische Theorie instationärer Flügelströmungen", unpublished, 1988.
[6] R. Hinder and E. Meister, Regarding some problems of the Kutta-Joukovskii condition in lifting surface theory, Math. Nachr., 184(1997), 191-228.
[7] V.A. Kondrat'ev, Elliptic boundary value problems in domains with conical or angular points, Trudy Moskow Mat. Obshch., 16(1967) 209-292 = Trans. Moskow Math. Soc., 16(1967), 227-313.
[8] V.G. Mazja, S.A. Nasarow and B.A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten I, Akademie-Verlag, Berlin, 1991.
[9] V.G. Mazja, S.A. Nasarow and B.A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten II, Akademie-Verlag, Berlin, 1991.
[10] V.G. Mazja and B.A. Plamenewski, The coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points, Math. Nachr., 76(1977), 29-60 = Amer. Math. Soc. Transl. (Ser. 2), 123(1984), 57-88.
[11] E. Meister, Randwertaufgaben der Funktionentheorie, B.G. Teubner, Stuttgart, 1983.
[12] S.A. Nazarov, The operator of a boundary problem with Chaplygin-Zhukovskii-Kutta type conditions on an edge of the boundary has the Fredholm property, Funkt. Anal. Appl., 31(1997), 183-192.
[13] S.A. Nazarov, About Singularities at angular points of a trailing edge under the Joukowskii-Kutta condition, Math. Meth. Appl. Sci., 21(1998), 939-967.
[14] S.A. Nazarov and B.A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Moskow, 1991 = Walter de Gruyter, 1994.
[15] E. Reissner, Boundary value problems in aerodynamics of lifting surfaces in non-uniform motion, Bull. Amer. Math. Soc., 55(1949), 825-850.

