56 research outputs found

    Crisis Prevention and Management during SARS Outbreak, Singapore

    Get PDF
    We discuss crisis prevention and management during the first 3 months of the severe acute respiratory syndrome (SARS) outbreak in Singapore. Four public health issues were considered: prevention measures, self-health evaluation, SARS knowledge, and appraisal of crisis management. We conducted telephone interviews with a representative sample of 1,201 adults, ≥21 years of age. We found that sex, age, and attitude (anxiety and perception of open communication with authorities) were associated with practicing preventive measures. Analysis of Singapore’s outbreak improves our understanding of the social dimensions of infectious disease outbreaks

    Transcriptional analysis highlights three distinct immune profiles of high-risk oral epithelial dysplasia

    Get PDF
    Oral potentially malignant disorders (OPMD) are precursors of oral squamous cell carcinoma (OSCC), and the presence of oral epithelial dysplasia (OED) in OPMD confers an increased risk of malignant transformation. Emerging evidence has indicated a role for the immune system in OPMD disease progression; however, the underlying immune mechanisms remain elusive. In this study, we used immune signatures established from cancer to delineate the immune profiles of moderate and severe OED, which are considered high-risk OPMD. We demonstrated that moderate and severe OEDs exhibit high lymphocyte infiltration and upregulation of genes involved in both immune surveillance (major histocompatibility complex-I, T cells, B cells and cytolytic activity) and immune suppression (immune checkpoints, T regulatory cells, and tumor-associated macrophages). Notably, we identified three distinct subtypes of moderate and severe OED: immune cytotoxic, non-cytotoxic and non-immune reactive. Active immune surveillance is present in the immune cytotoxic subtype, whereas the non-cytotoxic subtype lacks CD8 immune cytotoxic response. The non-immune reactive subtype showed upregulation of genes involved in the stromal microenvironment and cell cycle. The lack of T cell infiltration and activation in the non-immune reactive subtype is due to the dysregulation of CTNNB1, PTEN and JAK2. This work suggests that moderate and severe OED that harbor the non-cytotoxic or non-immune reactive subtype are likely to progress to cancer. Overall, we showed that distinct immune responses are present in high-risk OPMD, and revealed targetable pathways that could lead to potential new approaches for non-surgical management of OED

    MicroRNA-145 Regulates Human Corneal Epithelial Differentiation

    Get PDF
    Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC) epithelia containing corneal epithelial progenitor cells (CEPCs) and early transit amplifying cells, and their role in corneal epithelium.Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC) epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test). This was validated by quantitative polymerase chain reaction (qPCR). Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response) and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance). As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8) expression in both human corneal epithelial cells and primary CEPCs.We found expression of miR-143/145 cluster in human corneal epithelium. Our results also showed that miR-145 regulated the corneal epithelium formation and maintenance of epithelial integrity, via ITGB8 targeting

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Energy disaggregation of overlapping home appliances consumptions using a cluster splitting approach

    No full text
    Non-intrusive load monitoring (NILM) is a set of techniques that aims to decompose the aggregate energy consumptions of a household into the energy consumed by the respective individual appliances. When some of the home appliances have power consumptions levels that overlap with each other, it becomes a challenging problem to disaggregate the energy consumed by each of these appliances. In this work, we present an approach that split the clusters of the overlapping energy consumptions into the respective energy consumed by the individual appliances. The proposed approach involves firstly to analyze the cohesion of devices clusters to determine if a cluster should be split into two clusters. The proposed cluster splitting approach was tested on cases of overlapping devices clusters from six real houses available from the REDD public data sets. The results showed that the performance of the proposed approach depends on the degree of overlapping of the devices clusters, on whether the clusters are tight or loose and on the sizes of the clusters. The proposed approach can be applied to a clustering-based load disaggregation method as a subsequent step to deal with situations of overlapping appliances consumptions, so as to improve the overall energy disaggregation accuracy.Accepted versio

    Unsupervised approach for load disaggregation with devices interactions

    No full text
    Energy savings is one of the hottest issues and concerns nowadays due to high oil prices and global warming as a result of CO2 emissions. Non-intrusive appliances load monitoring (NIALM) is a methodology that aim to breakdown the total power consumption measured by the smart meter in each household into the power consumed by the individual appliances. These detailed information on individual appliances consumptions can influence the users to follow better energy usage profiles so as to achieve energy savings. We introduce a novel energy disaggregation model that consider mutual devices interactions and embed the information on devices interactions into the Factorial Hidden Markov Models (FHMM) representations of the aggregated data. The hidden states in the FHMM were inferred by means of the Viterbi algorithm. Devices interactions is a power quality issue that affects the measured power consumed by a device when there are other devices connected to the network. We tested our model using 16 a selected house from the REDD public data set. Our proposed approach showed enhanced results when compared with the standard FHMM. Devices interactions, when observed, enabled us to disaggregate and assign energy consumption for individual devices more accuratelyAccepted versio
    corecore