68 research outputs found

    Harnessing Population Genetics for Pest Management: Theory and Application for Urban Rats

    Get PDF
    Effective management of rodent pests requires an ecological understanding of how they move through their environment and how those movements influence the invasion, persistence, or reinvasion of problematic colonies. Traditional methodologies used to describe rodent movement patterns, such as mark-recapture, are hindered by their time-consuming nature and limited geographic scope. As such, our understanding of how rodents interact with urban environments remains limited. Population genetic principles and tools have the capacity to greatly increase our understanding of rodent population dynamics, ecological relationships, and movements across space, but this field is often unapproachable to non-scientist pest management professionals (PMPs). In this commentary, we aim to promote collaborative and integrative rodent pest management by introducing relevant population genetic principles, providing examples of their applications in studies of urban brown rats (Rattus norvegicus), and proposing future initiatives that link scientific, private, and government entities. We reinterpret results from a 2018 study of brown rats in Vancouver, British Columbia, Canada to show how genetic relationships among individual brown rats can be used to understand the geographic distribution of genetic clusters (i.e., colonies), natural barriers to migration, and the spatial scale of dispersal. While the 2018 study originally aimed to describe patterns of population genetic structure to understand the influence of urban landscapes on rats, here we describe how these results can be exploited by PMPs to directly inform the creation of management units and decrease the likelihood of rapid post-treatment reinvasion. Further, we discuss the difficulties inherent in population genetic studies and the potential for high-quality model sites to develop generalizable strategies. Overall, we hope to expand the toolbox of PMPs, foster collaboration, and move toward more informed and sustainable management strategies

    Rats About Town: A Systematic Review of Rat Movement in Urban Ecosystems

    Get PDF
    Norway and black rats (Rattus norvegicus and Rattus rattus) are ubiquitous urban pests, inhabiting cities worldwide. Despite their close association with people, urban rats remain difficult to control. This can be partly attributed to a general lack of information on basic rat ecology to inform management efforts. In this systematic review and narrative synthesis, we collate the published literature to provide a comprehensive description of what is known about urban rat movement, including information on home range, site fidelity, dispersal, movement patterns, barriers to, and factors impacting, movement. We also discuss the methodologies used to track and infer rat movement, as well as the advantages and limitations of employing these techniques. Our review suggests that the distances traveled by urban rats are location-specific, determined by both local resource availability and barriers to movement such as roadways. Although roads may impede rat movement, genetic techniques suggest that rats traverse roadways more often than revealed by capture-based tools, while long-distance dispersal events by either natural migration or facilitated by humans (i.e., as stowaways in transport vehicles) can maintain connectivity among distant populations. Because rat movement patterns are related to the transmission of rat-associated pathogens and the success of rodent control programs, these results have implications for city planners, pest control efforts, and public health. Therefore, we emphasize the importance of understanding local rat movement patterns in order to devise and deploy efficient and effective rat mitigation initiatives in urban centers

    Tails of Two Cities: Age and Wounding Are Associated With Carriage of Leptospira interrogans by Norway Rats (Rattus norvegicus) in Ecologically Distinct Urban Environments

    Get PDF
    Leptospirosis is a zoonotic disease for which rats are the primary reservoir in urban environments. It is transmitted from rats to people via urine, and is responsible for significant human morbidity and mortality in under-resourced settings. To mitigate the risks posed to people, it is important to understand the ecology of the causative agent Leptospira interrogans. The overarching objective of this study was to compare L. interrogans carriage in urban Norway rats in two ecologically distinct urban environments. We trapped Norway rats (Rattus norvegicus) in Vancouver, Canada (N = 525) and Salvador, Brazil (N = 433) to evaluate whether rat characteristics (i.e., sex, weight, sexual maturity, pregnancy, and the presence of wounds) and location of capture were associated with L. interrogans status. Using generalized linear mixed models to control for clustering by trapping location, we found a greater prevalence of L. interrogans in Salvador (79%) than in Vancouver (12%), and greater spatial heterogeneity in pathogen prevalence in Vancouver than in Salvador. In both locations, we found that older rats and rats with more bite wounds had greater odds of L. interrogans carriage, although wounding influenced pathogen status more for younger animals. Additionally, we found that juvenile rats in Salvador were more likely to leave the nest infected with L. interrogans than were rats in Vancouver, suggesting that potential differences in early-life transmission dynamics exist between the two locations. Together, these results elucidate both general L. interrogans ecology, as well as the importance of geographical location in determining transmission among rats

    Rat in a Cage: Trappability of Urban Norway Rats (Rattus norvegicus)

    Get PDF
    Understanding the local ecology of urban Norway rats (Rattus norevgicus) is necessary to inform effective rat mitigation strategies. While Capture-Mark-Recapture (CMR) methods can be used to acquire such ecological information (e.g., abundance, movement patterns, and habitat use), these techniques assume that all individuals of the study population are equally trappable. To test whether urban rats adhere to this assumption, we conducted a 4-week CMR study in an urban neighborhood of Vancouver, Canada, to evaluate whether rat characteristics (i.e., age, sex, size, wound status, and infection with the pathogen Leptospira spp.) were associated with trappability. We found that the majority of rats entered traps in the first 2 weeks of trapping, and that larger rats were caught earlier in the trapping period. However, smaller, sexually immature rats were recaught more often than were larger, sexually mature rats, suggesting that prior capture affects the ability to recapture urban Norway rats. This highlights the need for CMR studies to account for size, sexual maturity, and prior capture when interpreting data

    Tails of Two Cities: Age and Wounding Are Associated With Carriage of Leptospira interrogans by Norway Rats (Rattus norvegicus) in Ecologically Distinct Urban Environments

    Get PDF
    Leptospirosis is a zoonotic disease for which rats are the primary reservoir in urban environments. It is transmitted from rats to people via urine, and is responsible for significant human morbidity and mortality in under-resourced settings. To mitigate the risks posed to people, it is important to understand the ecology of the causative agent Leptospira interrogans. The overarching objective of this study was to compare L. interrogans carriage in urban Norway rats in two ecologically distinct urban environments. We trapped Norway rats (Rattus norvegicus) in Vancouver, Canada (N = 525) and Salvador, Brazil (N = 433) to evaluate whether rat characteristics (i.e., sex, weight, sexual maturity, pregnancy, and the presence of wounds) and location of capture were associated with L. interrogans status. Using generalized linear mixed models to control for clustering by trapping location, we found a greater prevalence of L. interrogans in Salvador (79%) than in Vancouver (12%), and greater spatial heterogeneity in pathogen prevalence in Vancouver than in Salvador. In both locations, we found that older rats and rats with more bite wounds had greater odds of L. interrogans carriage, although wounding influenced pathogen status more for younger animals. Additionally, we found that juvenile rats in Salvador were more likely to leave the nest infected with L. interrogans than were rats in Vancouver, suggesting that potential differences in early-life transmission dynamics exist between the two locations. Together, these results elucidate both general L. interrogans ecology, as well as the importance of geographical location in determining transmission among rats

    Global population divergence and admixture of the brown rat (Rattus norvegicus)

    Get PDF
    Native to China and Mongolia, the brown rat (Rattus norvegicus) now enjoys a worldwide distribution. While black rats and the house mouse tracked the regional development of human agricultural settlements, brown rats did not appear in Europe until the 1500s, suggesting their range expansion was a response to relatively recent increases in global trade. We inferred the global phylogeography of brown rats using 32 k SNPs, and detected 13 evolutionary clusters within five expansion routes. One cluster arose following a southward expansion into Southeast Asia. Three additional clusters arose from two independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a second to western North America. Westward expansion resulted in the colonization of Europe from which subsequent rapid colonization of Africa, the Americas and Australasia occurred, and multiple evolutionary clusters were detected. An astonishing degree of fine-grained clustering between and within sampling sites underscored the extent to which urban heterogeneity shaped genetic structure of commensal rodents. Surprisingly, few individuals were recent migrants, suggesting that recruitment into established populations is limited. Understanding the global population structure of R. norvegicus offers novel perspectives on the forces driving the spread of zoonotic disease, and aids in development of rat eradication programmes

    Could rats pose a health risk for people living in Vancouver's Downtown Eastside? Understanding the ecology of rats and rat-associated zoonoses in an inner-city neighbourhood.

    No full text
    Urban rats (Rattus spp.) are an important source of zoonotic pathogens, yet there is a paucity of integrated, interdisciplinary, ecosystem-based research on rat-associated zoonoses (RAZ). The goal of this project was to begin to characterize the public health risks associated with rats by studying the ecology of rat populations and the zoonotic pathogens that they carry in an inner-city neighbourhood of Vancouver, Canada. By characterizing rat populations within our study area, we were able to identify a number of factors which could influence the ecology of RAZ. We were also able to design a tool to predict rat abundance based on characteristics of the urban microenvironment, which may be useful for predicting RAZ prevalence in the future. Although we found that L. interrogans (a common RAZ) was present in our study area, other zoonoses thought to be endemic in rat populations worldwide (Seoul hantavirus, Rickettsia typhi, and Bartonella spp.) were conspicuously absent. However, rats were found to carry other potentially zoonotic organisms (Clostridium difficile and methicillin-resistant Staphylococcus aureus) for which they are not the ‘traditional’ reservoir. Finally, we found that by integrating data regarding rat ecology and RAZ, we were able to gain a more comprehensive picture of how these pathogens circulate within rat populations. Overall, this research illustrates the importance of a comprehensive and holistic approach for obtaining a better understanding of RAZ, and highlights the need for ongoing research and surveillance.Medicine, Faculty ofPopulation and Public Health (SPPH), School ofGraduat
    • …
    corecore