6 research outputs found

    Rapid post-glacial bedrock weathering in coastal Norway

    Get PDF
    Quantifying bedrock weathering rates under diverse climate conditions is essential to understanding timescales of landscape evolution. Yet, weathering rates are often difficult to constrain, and associating a weathered landform to a specific formative environment can be complicated by overprinting of successive processes and temporally varying climate. In this study, we investigate three sites between 59°N and 69°N along the Norwegian coast that display grussic saprolite, tafoni, and linear weathering grooves on diverse lithologies. These weathering phenomena have been invoked as examples of geomorphic archives predating Quaternary glaciations and consequently as indicators of minimal glacial erosion. Here we apply cosmogenic nuclide chronometry to assess the recent erosional history. Our results demonstrate that all three sites experienced sufficient erosion to remove most cosmogenic nuclides formed prior to the Last Glacial Maximum. This finding is inconsistent with preservation of surficial (<1–2 m) weathered landforms under non-erosive ice during the last glacial period, while simultaneously demonstrating that post-glacial weathering and erosion rates can be locally rapid (4–10 cm kyr−1) in cold temperate to subarctic coastal locations

    Coupling DDT and Marmot for Debugging of MPI Applications

    Get PDF

    Coupling DDT and Marmot for Debugging of MPI Applications

    No full text
    Parallel programming is a complex, and, since the multi-core era has dawned, also a more common task that can be alleviated considerably by tools supporting the application development and porting process. Existing tools, namely the MPI correctness checker Marmot and the parallel debugger DDT, have so far been used on a wide range of platforms as stand-alone tools to cover different aspects of correctness debugging. In this paper we will describe first steps towards coupling these two tools to provide application developers with a powerful and user-friendly environment.

    Rapid post-glacial bedrock weathering in coastal Norway

    No full text
    Quantifying bedrock weathering rates under diverse climate conditions is essential to understanding timescales of landscape evolution. Yet, weathering rates are often difficult to constrain, and associating a weathered landform to a specific formative environment can be complicated by overprinting of successive processes and temporally varying climate. In this study, we investigate three sites between 59°N and 69°N along the Norwegian coast that display grussic saprolite, tafoni, and linear weathering grooves on diverse lithologies. These weathering phenomena have been invoked as examples of geomorphic archives predating Quaternary glaciations and consequently as indicators of minimal glacial erosion. Here we apply cosmogenic nuclide chronometry to assess the recent erosional history. Our results demonstrate that all three sites experienced sufficient erosion to remove most cosmogenic nuclides formed prior to the Last Glacial Maximum. This finding is inconsistent with preservation of surficial (<1–2 m) weathered landforms under non-erosive ice during the last glacial period, while simultaneously demonstrating that post-glacial weathering and erosion rates can be locally rapid (4–10 cm kyr−1) in cold temperate to subarctic coastal locations

    Rapid post-glacial bedrock weathering in coastal Norway

    No full text
    Quantifying bedrock weathering rates under diverse climate conditions is essential to understanding timescales of landscape evolution. Yet, weathering rates are often difficult to constrain, and associating a weathered landform to a specific formative environment can be complicated by overprinting of successive processes and temporally varying climate. In this study, we investigate three sites between 59°N and 69°N along the Norwegian coast that display grussic saprolite, tafoni, and linear weathering grooves on diverse lithologies. These weathering phenomena have been invoked as examples of geomorphic archives predating Quaternary glaciations and consequently as indicators of minimal glacial erosion. Here we apply cosmogenic nuclide chronometry to assess the recent erosional history. Our results demonstrate that all three sites experienced sufficient erosion to remove most cosmogenic nuclides formed prior to the Last Glacial Maximum. This finding is inconsistent with preservation of surficial (<1–2 m) weathered landforms under non-erosive ice during the last glacial period, while simultaneously demonstrating that post-glacial weathering and erosion rates can be locally rapid (4–10 cm kyr−1) in cold temperate to subarctic coastal locations
    corecore