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Parallel programming is a complex, and, since the multi-core era has dawned, also a more
common task that can be alleviated considerably by tools supporting the application develop-
ment and porting process. Existing tools, namely the MPI correctness checker Marmot and
the parallel debugger DDT, have so far been used on a wide range of platforms as stand-alone
tools to cover different aspects of correctness debugging. In this paper we will describe first
steps towards coupling these two tools to provide application developers with a powerful and
user-friendly environment.

1 Introduction

The Message Passing Interface (MPI) has been a commonly used standard1, 2 for writing
parallel programs for more than a decade, at least within the High Performance Comput-
ing (HPC) community. With the arrival of multi-core processors, parallel programming
paradigms such as MPI or OpenMP will become more popular among a wider public in
many application domains as software needs to be adapted and parallelised to exploit fully
the processor’s performance. However, tracking down a bug in a distributed program can
turn into a very painful task, especially if one has to deal with a huge and hardly compre-
hensible piece of legacy code.

Therefore, we plan to couple existing tools, namely the MPI correctness checker, Mar-
mot, and the parallel debugger, DDT, to provide MPI application developers with a pow-
erful and user-friendly environment. So far, both tools have been used on a wide range of
platforms as stand-alone tools to cover different aspects of correctness debugging. While
(parallel) debuggers are a great help in examining code at source level, e.g. by monitor-
ing the execution, tracking values of variables, displaying the stack, finding memory leaks,
etc., they give little insight into why a program actually gives wrong results or crashes when
the failure is due to incorrect usage of the MPI API. To unravel such kinds of errors, the
Marmot library has been developed. The tool checks at run-time for errors frequently made
in MPI applications, e.g. deadlocks, the correct construction and destruction of resources,
etc., and also issues warnings in the case of non-portable constructs.

In the following sections, we will shortly describe both tools and discuss our first con-
siderations and results towards integrating the two of them.
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1.1 DDT - Distributed Debugging Tool

Allinea Software’s DDT21 is a source-level debugger for scalar, multi-threaded and large-
scale parallel C, C++ and Fortran codes. It provides complete control over the execution
of a job and allows the user to examine in detail the state of every aspect of the processes
and threads within it.

Control of processes is aggregated using groups of processes which can be run, single
stepped, or stopped together. The user can also set breakpoints at points in the code which
will cause a process to pause when reaching it.

When a program is paused, the source code is highlighted showing which lines have
threads on them and, by simply hovering the mouse, the actual threads present are identi-
fied. By selecting an individual process, its data can be interrogated - for example to find
the local variables and their values, or to evaluate specific expressions.

There are many parts of the DDT interface that help the user get a quick understanding
of the code at scale - such as the parallel stack view which aggregates the call stacks of
every process in a job and displays it as tree, or the cross-process data comparison tools.

Specifically to aid MPI programming, there is a window that examines the current
state of MPI message queues - showing the send, receive and unexpected receive buffers.
However, this can only show the current state of messages - and bugs due to the historic
MPI behaviour are not easy to detect with only current information.

1.2 Marmot - MPI Correctness Checker

Marmot9–11, 14 is a library that uses the so-called PMPI profiling interface to intercept MPI
calls and analyse them during runtime. It has to be linked to the application in addition
to the underlying MPI implementation, not requiring any modification of the application’s
source code nor of the MPI library. The tool checks if the MPI API is used correctly and
checks for errors frequently made in MPI applications, e.g. deadlocks, the correct construc-
tion and destruction of resources, etc. It also issues warnings for non-portable behaviour,
e.g. using tags outside the range guaranteed by the MPI-standard. The output of the tool
is available in different formats, e.g. as text log file or html/xml, which can be displayed
and analysed using a graphical interface. Marmot is intended to be a portable tool that has
been tested on many different platforms and with many different MPI implementations.

Marmot supports the complete MPI-1.2 standard for C and Fortran applications and is
being extended to also cover MPI-2 functionality12, 13.

Figure 1 illustrates the design of Marmot. Local checks including verification of ar-
guments such as tags, communicators, ranks, etc. are performed on the client side. An
additional MPI process (referred to as debug server) is added for the tasks that cannot be
handled within the context of a single MPI process, e.g. deadlock detection. Another task
of the debug server is the logging and the control of the execution flow. Every client has
to register at the debug server, which gives its clients the permission for execution in a
round-robin way. Information is transferred between the original MPI processes and the
debug server using MPI.

In order to ensure that the debug server process is transparent to the application, we
map MPI COMM WORLD to a Marmot communicator that contains only the application
processes. Since all other communicators are derived from MPI COMM WORLD they will
also automatically exclude the debug server process. This mapping is done at start-up time
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Figure 1. Design of Marmot.

in the MPI Init call, where we also map all other predefined MPI resources, such as
groups or datatypes, to our own Marmot resources. When an application constructs or de-
structs resources during run-time, e.g. by creating or freeing a user-defined communicator,
the Marmot maps are updated accordingly. Having its own book-keeping of MPI resources,
independently of the actual MPI implementation, Marmot can thus verify correct handling
of resources.

1.3 Related Work

Debugging MPI programs can be addressed in various ways. The different solutions can
be roughly grouped in four different approaches:

1. classical debuggers: Among the best-known parallel debuggers are the commercial
debuggers DDT21 and Totalview22. It is also possible to attach the freely available
debugger gdb20 to single MPI processes.

2. The second approach is to provide a special debug version of the MPI library, for
instance for checking collective routines, e.g. mpich7 or NEC MPI18.

3. Another possibility is to develop tools for run-time analysis of MPI applications.
Examples of such an approach are MPI-CHECK16, Umpire19 and Marmot9. MPI-
CHECK is currently restricted to Fortran code and performs argument type checking
or finds problems such as deadlocks. Like Marmot, Umpire19 uses the profiling inter-
face.

4. The fourth approach is to collect all information on MPI calls in a trace file for
post-mortem analysis, which can be analysed by a separate tool after program exe-
cution15, 17. A disadvantage with this approach is that such a trace file may be very
large. However, the main problem is guaranteeing that the trace file is written in the
presence of MPI errors, because the behaviour after an MPI error is implementation
defined.

2 Coupling DDT and Marmot

The ultimate goal of coupling both tools is to create a common software development
environment with debugging and correctness checking facilities at the same time, comple-
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menting each other and, thus, offering the opportunity to detect a maximum number of
bugs on different levels, for example, bugs being due to incorrect usage of the MPI API,
memory leaks, etc. In order to do so, a number of considerations have to be taken into
account and adaptations have to be implemented in both tools.

• Marmot’s MPI Init: As described in Section 1.2, Marmot requires one additional
process for the debug server, which is always running on the process with highest
rank. That means while the first n processes call our redefined MPI Init, i.e. call
PMPI Init, take part in the special Marmot start-up and return from the MPI Init
call to proceed with the application’s code, the debug server (process n + 1) always
remains in MPI Init to execute Marmot’s debug server code. When executing an
application with DDT and Marmot, DDT’s environment variable DDT MPI INIT has
to be set to the value PMPI Init to circumvent problems with attaching DDT also
to this last process, because the DDT start-up procedure normally requires a process
to return from the MPI Init call.

While the debug server process is transparent to the application in the Marmot-only
approach, i.e. from the user’s point of view, showing silent signs of life by announc-
ing errors and producing a logfile without being visible as additional MPI process, it
is in the coupled approach currently also displayed in DDT’s graphical interface and
is, thus, visible to the user in the same way as one of the original application’s MPI
processes. As this may be confusing to users, the ultimate goal will be to hide Mar-
mot’s debug server process within DDT completely and to allow steering of Marmot
through a plugin.

• Marmot’s breakpoints: One reason for currently still displaying this debug server
process – though it has nothing to do with the actual application itself – is that it
allows users to set breakpoints that will be hit when Marmot finds an error or is-
sues a warning. For this purpose, we implemented simple functions, named e.g.
insertBreakpointMarmotError, that are called by Marmot’s debug server
in such an event, see Fig.2 left. The screenshot on the bottom shows the application’s
code pausing at the erroneous line, with the last process pausing in MPI Init as
explained above. As it has control over the execution flow, hitting one of the debug
server’s special breakpoints implies that the application processes cannot continue
with the erroneous MPI call nor perform any further MPI calls, respectively.

As part of the integration with Marmot, DDT will automatically add breakpoints into
these “stub” functions and will thus alert the user to a Marmot-detected error or warn-
ing by pausing the program.

• Error dialogues: Having detected an error with Marmot, the question is how to get
the warning message across to the user within DDT. Currently, a user will find such
messages in Marmot’s log file, or in DDT’s variables or stderr windows at runtime, as
shown in Fig.3.

Simple text and error code are shown in DDT’s local variables panel at the break-
points inside the “stub” error functions - these will be passed as arguments to those
functions. Extra integration is planned, such as displaying more detailed information
and providing extra windows to display the context of errors more clearly.
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Figure 2. Setting breakpoints in Marmot’s debug server process (top) causes program to stop at an error/warning
detected by Marmot - in this case, a warning for using COUNT WARN= 0 in send/recv calls (bottom)
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Figure 3. Deadlock warning from Marmot

• Dynamic linking: Currently, Marmot is built as static libraries per default. While this
is an advantage concerning the performance, it is a drawback in the integration process
of Marmot and DDT. Beside the fact that the size of statically linked applications can
be very large compared to those dynamically linked, a more severe issue is, that as
soon as an application is linked statically against the Marmot libraries, this application
cannot be run without Marmot. Our goal is to be able to activate Marmot for a given
run within DDT, and to disable it for another, using one and the same binary. The
trick is to preload the dynamic Marmot libraries by using the environment variable
LD PRELOAD.

This will tell the dynamic linker to first look in the Marmot libraries for any MPI
call, provided that also the MPI libraries themselves are dynamic. For switching off
Marmot, the variable will simply be unset. Note that in this case neither at compile
time nor at link time the application has to be aware of the very existence of Marmot.
Only at runtime the dynamic linker decides whether the MPI calls will be intercepted
by Marmot or not. Switching Marmot on and off could then be as easy as ticking
a checkbox in the DDT GUI, which consequently takes care of the preloading and
automatically adds one extra process for the debug server.

Although not all MPIs export the LD PRELOAD setting to all processes in a job seam-
lessly, DDT already has the mechanism to do this for every MPI - and therefore ex-
tending it to preload the Marmot libraries will be a simple task.

3 First Results

Running applications with Marmot in conjunction with DDT has been tested on various
HLRS clusters using different MPI Implementations, e.g. different vendor MPIs or Open
Source implementations such as mpich3, 4 or Open MPI5, 6.
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As a proof of concept, some simple programs were used for testing. For instance, the
example shown in Fig.2 and 3 first triggers a warning by using send and receive calls with
count 0 and then an error by using send and receive calls in wrong order (deadlock).

Building and preloading shared libraries were successfully tested on an Intel Xeon
cluster with Open MPI 1.2.3 and IntelMPI 3.0, using the Intel Compiler 10.0. For both
MPI implementations the build process generally involves the following steps: generating
objects with position independent code and building shared libraries from these object files.

A given MPI application is invoked e.g. by the command mpirun -np <n>
./myMPIApp, where n denotes the number of processes. The same application can be
run with Marmot by setting the appropriate environment variable and adjusting the number
of processes:
env LD PRELOAD="<marmotlib>" mpirun -np <n+1> ./myMPIApp.

4 Concluding Remarks

We have presented the DDT parallel debugger and the Marmot MPI correctness checker,
which have been used successfully as stand-alone tools so far. Recently we have made
first efforts to combine both tools so that MPI application developers get better insight
into where and why their programs crash or give wrong results. The approach taken looks
promising and could be verified using simple test programs.

Future work includes tests with real applications and technical improvements, e.g. a
tighter integration of the display of warnings and message queues, thus being more user-
friendly, or enhancements in Marmot’s build process.
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