147 research outputs found

    Hybrid Whale-Mud-Ring Optimization for Precise Color Skin Cancer Image Segmentation

    Full text link
    Timely identification and treatment of rapidly progressing skin cancers can significantly contribute to the preservation of patients' health and well-being. Dermoscopy, a dependable and accessible tool, plays a pivotal role in the initial stages of skin cancer detection. Consequently, the effective processing of digital dermoscopy images holds significant importance in elevating the accuracy of skin cancer diagnoses. Multilevel thresholding is a key tool in medical imaging that extracts objects within the image to facilitate its analysis. In this paper, an enhanced version of the Mud Ring Algorithm hybridized with the Whale Optimization Algorithm, named WMRA, is proposed. The proposed approach utilizes bubble-net attack and mud ring strategy to overcome stagnation in local optima and obtain optimal thresholds. The experimental results show that WMRA is powerful against a cluster of recent methods in terms of fitness, Peak Signal to Noise Ratio (PSNR), and Mean Square Error (MSE)

    On the Sensitivity of Deep Load Disaggregation to Adversarial Attacks

    Full text link
    Non-intrusive Load Monitoring (NILM) algorithms, commonly referred to as load disaggregation algorithms, are fundamental tools for effective energy management. Despite the success of deep models in load disaggregation, they face various challenges, particularly those pertaining to privacy and security. This paper investigates the sensitivity of prominent deep NILM baselines to adversarial attacks, which have proven to be a significant threat in domains such as computer vision and speech recognition. Adversarial attacks entail the introduction of imperceptible noise into the input data with the aim of misleading the neural network into generating erroneous outputs. We investigate the Fast Gradient Sign Method (FGSM), a well-known adversarial attack, to perturb the input sequences fed into two commonly employed CNN-based NILM baselines: the Sequence-to-Sequence (S2S) and Sequence-to-Point (S2P) models. Our findings provide compelling evidence for the vulnerability of these models, particularly the S2P model which exhibits an average decline of 20\% in the F1-score even with small amounts of noise. Such weakness has the potential to generate profound implications for energy management systems in residential and industrial sectors reliant on NILM models

    Deep Transfer Learning Applications in Intrusion Detection Systems: A Comprehensive Review

    Full text link
    Globally, the external Internet is increasingly being connected to the contemporary industrial control system. As a result, there is an immediate need to protect the network from several threats. The key infrastructure of industrial activity may be protected from harm by using an intrusion detection system (IDS), a preventive measure mechanism, to recognize new kinds of dangerous threats and hostile activities. The most recent artificial intelligence (AI) techniques used to create IDS in many kinds of industrial control networks are examined in this study, with a particular emphasis on IDS-based deep transfer learning (DTL). This latter can be seen as a type of information fusion that merge, and/or adapt knowledge from multiple domains to enhance the performance of the target task, particularly when the labeled data in the target domain is scarce. Publications issued after 2015 were taken into account. These selected publications were divided into three categories: DTL-only and IDS-only are involved in the introduction and background, and DTL-based IDS papers are involved in the core papers of this review. Researchers will be able to have a better grasp of the current state of DTL approaches used in IDS in many different types of networks by reading this review paper. Other useful information, such as the datasets used, the sort of DTL employed, the pre-trained network, IDS techniques, the evaluation metrics including accuracy/F-score and false alarm rate (FAR), and the improvement gained, were also covered. The algorithms, and methods used in several studies, or illustrate deeply and clearly the principle in any DTL-based IDS subcategory are presented to the reader

    Zipf distribution power allocation approach for NOMA Systems

    Get PDF
    L'accès multiple non orthogonal  ( NOMA ) a reçu une attention considérable  pour  le développement des réseaux sans fil 5G et au-delà. Power-domain  NOMA  fonctionne sur le concept d'attribution  de niveaux de puissance variables  aux  utilisateurs  dans la  même fréquence  et  le même temps bloc. Dans cet article, nous proposons une nouvelle approche d'allocation de puissance qui utilise la loi de distribution Zipf qui satisfait la condition de base d'un système NOMA. Le Zipf PA se caractérise par la simplicité et la facilité de mise en œuvre qui permet d'étendre la capacité du système à prendre en charge un grand nombre d'utilisateurs. Les résultats numériques montrent que le système atteint un débit et une efficacité énergétique élevés sans aucune contrainte d'optimisation des paramètres, ainsi qu'une capacité améliorée en augmentant le nombre d'utilisateurs par rapport au système NOMA avec les techniques d'allocation de puissance existantes

    The Media industry in the era of artificial intelligence mechanisms and impacts

    Get PDF
    Abstract: Explore the role of artificial intelligence in enhancing the personalization of media content, improving the user experience, and increasing audience engagement. The study also discusses the potential ethical challenges that arise when using artificial intelligence in the media industry and provides recommendations for how to address them. Through an in-depth analysis of case studies and industry trends, this study provides valuable insights into how artificial intelligence can be leveraged to improve the efficiency and effectiveness of media content production and distribution. Overall, the findings of this study suggest that artificial intelligence has the potential to revolutionize the media industry, and that organizations that invest in this technology are likely to have a competitive advantage in the increasingly crowded media landscape. Keywords: Artificial intelligence, mechanisms, impacts, media wor

    Appliance identification using a histogram post-processing of 2D local binary patterns for smart grid applications

    Full text link
    Identifying domestic appliances in the smart grid leads to a better power usage management and further helps in detecting appliance-level abnormalities. An efficient identification can be achieved only if a robust feature extraction scheme is developed with a high ability to discriminate between different appliances on the smart grid. Accordingly, we propose in this paper a novel method to extract electrical power signatures after transforming the power signal to 2D space, which has more encoding possibilities. Following, an improved local binary patterns (LBP) is proposed that relies on improving the discriminative ability of conventional LBP using a post-processing stage. A binarized eigenvalue map (BEVM) is extracted from the 2D power matrix and then used to post-process the generated LBP representation. Next, two histograms are constructed, namely up and down histograms, and are then concatenated to form the global histogram. A comprehensive performance evaluation is performed on two different datasets, namely the GREEND and WITHED, in which power data were collected at 1 Hz and 44000 Hz sampling rates, respectively. The obtained results revealed the superiority of the proposed LBP-BEVM based system in terms of the identification performance versus other 2D descriptors and existing identification frameworks.Comment: 8 pages, 10 figures and 5 table

    Analyses of a composite functionally graded material beam with a new transverse shear deformation function

    Get PDF
    In the present paper, we offer a higher-order shear deformation theory for bending of functionally graded beam. A new polynomial shear function is used which satisfies the stress-free boundary conditions (exact boundary conditions on the stress) at both, top and bottom surfaces of the beam. Hence, the shear correction factor is not necessary. Additionally, the present theory has strong similarities with Timoshenko beam theory in some concepts such as equations of movement, boundary conditions and stress resultant expressions. The governing equations and boundary conditions are derived from the principle of minimum potential energy. Functionally graded material FGM beams have a smooth variation of material properties due to continuous (unbroken) change in micro structural details. The variation of material properties is along the beam thickness and assumed to follow a power-law of the volume fraction of the constituents. Finite element numerical solutions obtained with the new polynomial shear function are presented and the obtained results are evaluated versus the existing solutions to verify the validity of the present theory. At last, the influences of power law indicator and the new shear deformation polynomial function on the bending of functionally graded beams are explored

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Deep Transfer Learning for Automatic Speech Recognition: Towards Better Generalization

    Full text link
    Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research
    corecore