78 research outputs found
Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes
<p>Abstract</p> <p>Background</p> <p>Prior studies suggest a role for a variant (rs5743836) in the promoter of toll-like receptor 9 (TLR9) in asthma and other inflammatory diseases. We performed detailed genetic association studies of the functional variant rs5743836 with asthma susceptibility and asthma-related phenotypes in three independent cohorts.</p> <p>Methods</p> <p>rs5743836 was genotyped in two family-based cohorts of children with asthma and a case-control study of adult asthmatics. Association analyses were performed using chi square, family-based and population-based testing. A luciferase assay was performed to investigate whether rs5743836 genotype influences TLR9 promoter activity.</p> <p>Results</p> <p>Contrary to prior reports, rs5743836 was not associated with asthma in any of the three cohorts. Marginally significant associations were found with FEV<sub>1 </sub>and FVC (p = 0.003 and p = 0.008, respectively) in one of the family-based cohorts, but these associations were not significant after correcting for multiple comparisons. Higher promoter activity of the CC genotype was demonstrated by luciferase assay, confirming the functional importance of this variant.</p> <p>Conclusion</p> <p>Although rs5743836 confers regulatory effects on TLR9 transcription, this variant does not appear to be an important asthma-susceptibility locus.</p
Empirical Models of Transitions between Coral Reef States: Effects of Region, Protection, and Environmental Change
There has been substantial recent change in coral reef communities. To date, most analyses have focussed on static patterns or changes in single variables such as coral cover. However, little is known about how community-level changes occur at large spatial scales. Here, we develop Markov models of annual changes in coral and macroalgal cover in the Caribbean and Great Barrier Reef (GBR) regions
Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences
Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes.Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (p<0.05) in our discovery cohort and in three independent cohorts at either the SNP or gene level (p<0.05). Further, we determined that our selection approach was superior to random selection of genes either differentially expressed in asthmatics compared to controls (pβ=β0.0049) or selected based on the literature alone (pβ=β0.0049), substantiating the validity of our gene selection approach. Importantly, we observed that 7 of 9 SNPs in the KIF3A gene more than doubled the odds of asthma (ORβ=β2.3, p<0.0001) and increased the odds of allergic disease (ORβ=β1.8, p<0.008). Our data indicate that KIF3A rs7737031 (T-allele) has an asthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach.Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes
For whom and under what circumstances do school-based energy balance behavior interventions work? Systematic review on moderators
The aim of this review was to systematically review the results and quality of studies investigating the moderators of school-based interventions aimed at energy balance-related behaviors. We systematically searched the electronic databases of Pubmed, EMBASE, Cochrane, PsycInfo, ERIC and Sportdiscus. In total 61 articles were included. Gender, ethnicity, age, baseline values of outcomes, initial weight status and socioeconomic status were the most frequently studied potential moderators. The moderator with the most convincing evidence was gender. School-based interventions appear to work better for girls than for boys. Due to the inconsistent results, many studies reporting non-significant moderating effects, and the moderate methodological quality of most studies, no further consistent results were found. Consequently, there is lack of insight into what interventions work for whom. Future studies should apply stronger methodology to test moderating effects of important potential target group segmentations
Genetic Determinants of Lipid Traits in Diverse Populations from the Population Architecture using Genomics and Epidemiology (PAGE) Study
For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWASβidentified variants in diverse population-based studies. We genotyped 49 GWASβidentified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (βΌ20,000), African American (βΌ9,000), American Indian (βΌ6,000), Mexican American/Hispanic (βΌ2,500), Japanese/East Asian (βΌ690), and Pacific Islander/Native Hawaiian (βΌ175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits
HMGA1 Reprograms Somatic Cells into Pluripotent Stem Cells by Inducing Stem Cell Transcriptional Networks
PMC3499526BACKGROUND:
Although recent studies have identified genes expressed in human embryonic stem cells (hESCs) that induce pluripotency, the molecular underpinnings of normal stem cell function remain poorly understood. The high mobility group A1 (HMGA1) gene is highly expressed in hESCs and poorly differentiated, stem-like cancers; however, its role in these settings has been unclear.
METHODS/PRINCIPAL FINDINGS:
We show that HMGA1 is highly expressed in fully reprogrammed iPSCs and hESCs, with intermediate levels in ECCs and low levels in fibroblasts. When hESCs are induced to differentiate, HMGA1 decreases and parallels that of other pluripotency factors. Conversely, forced expression of HMGA1 blocks differentiation of hESCs. We also discovered that HMGA1 enhances cellular reprogramming of somatic cells to iPSCs together with the Yamanaka factors (OCT4, SOX2, KLF4, cMYC - OSKM). HMGA1 increases the number and size of iPSC colonies compared to OSKM controls. Surprisingly, there was normal differentiation in vitro and benign teratoma formation in vivo of the HMGA1-derived iPSCs. During the reprogramming process, HMGA1 induces the expression of pluripotency genes, including SOX2, LIN28, and cMYC, while knockdown of HMGA1 in hESCs results in the repression of these genes. Chromatin immunoprecipitation shows that HMGA1 binds to the promoters of these pluripotency genes in vivo. In addition, interfering with HMGA1 function using a short hairpin RNA or a dominant-negative construct blocks cellular reprogramming to a pluripotent state.
CONCLUSIONS:
Our findings demonstrate for the first time that HMGA1 enhances cellular reprogramming from a somatic cell to a fully pluripotent stem cell. These findings identify a novel role for HMGA1 as a key regulator of the stem cell state by inducing transcriptional networks that drive pluripotency. Although further studies are needed, these HMGA1 pathways could be exploited in regenerative medicine or as novel therapeutic targets for poorly differentiated, stem-like cancers.JH Libraries Open Access Fun
Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation
Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins
- β¦