512 research outputs found

    An Aggregation Technique for Large-Scale PEPA Models with Non-Uniform Populations

    Get PDF
    Performance analysis based on modelling consists of two major steps: model construction and model analysis. Formal modelling techniques significantly aid model construction but can exacerbate model analysis. In particular, here we consider the analysis of large-scale systems which consist of one or more entities replicated many times to form large populations. The replication of entities in such models can cause their state spaces to grow exponentially to the extent that their exact stochastic analysis becomes computationally expensive or even infeasible. In this paper, we propose a new approximate aggregation algorithm for a class of large-scale PEPA models. For a given model, the method quickly checks if it satisfies a syntactic condition, indicating that the model may be solved approximately with high accuracy. If so, an aggregated CTMC is generated directly from the model description. This CTMC can be used for efficient derivation of an approximate marginal probability distribution over some of the model's populations. In the context of a large-scale client-server system, we demonstrate the usefulness of our method

    A survey of the PEPA tools

    Get PDF
    This paper surveys the history and the current state of tool support for modelling with the PEPA stochastic process algebra and the PEPA nets modelling language. We discuss future directions for tool support for the PEPA family of languages.

    Fluid Model Checking

    Full text link
    In this paper we investigate a potential use of fluid approximation techniques in the context of stochastic model checking of CSL formulae. We focus on properties describing the behaviour of a single agent in a (large) population of agents, exploiting a limit result known also as fast simulation. In particular, we will approximate the behaviour of a single agent with a time-inhomogeneous CTMC which depends on the environment and on the other agents only through the solution of the fluid differential equation. We will prove the asymptotic correctness of our approach in terms of satisfiability of CSL formulae and of reachability probabilities. We will also present a procedure to model check time-inhomogeneous CTMC against CSL formulae

    Amalgamation of Transition Sequences in the PEPA Formalism

    Get PDF
    This report presents a proposed formal approach towards reduction of sequences in PEPA components. By performing the described amalgamation procedure we may remove, from the Markov chain underlying an initial PEPA model, those states for which detailed local balance equations cannot be formulated. This transformation may lead to a simpler model with product form solution. Some classes of reduced models preserve those performance measures which we are interested in and, moreover, the steady state solution vector is much easier to find from the computational point of view

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    HYPE with stochastic events

    Get PDF
    The process algebra HYPE was recently proposed as a fine-grained modelling approach for capturing the behaviour of hybrid systems. In the original proposal, each flow or influence affecting a variable is modelled separately and the overall behaviour of the system then emerges as the composition of these flows. The discrete behaviour of the system is captured by instantaneous actions which might be urgent, taking effect as soon as some activation condition is satisfied, or non-urgent meaning that they can tolerate some (unknown) delay before happening. In this paper we refine the notion of non-urgent actions, to make such actions governed by a probability distribution. As a consequence of this we now give HYPE a semantics in terms of Transition-Driven Stochastic Hybrid Automata, which are a subset of a general class of stochastic processes termed Piecewise Deterministic Markov Processes.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Don't Just Go with the Flow: Cautionary Tales of Fluid Flow Approximation

    Get PDF
    Fluid flow approximation allows efficient analysis of large scale PEPA models. Given a model, this method outputs how the mean, variance, and any other moment of the model's stochastic behaviour evolves as a function of time. We investigate whether the method's results, i.e. moments of the behaviour, are sufficient to capture system's actual dynamics. We ran a series of experiments on a client-server model. For some parametrizations of the model, the model's behaviour can accurately be characterized by the fluid flow approximations of its moments. However, the experiments show that for some other parametrizations, these moments are not sufficient to capture the model's behaviour, highlighting a pitfall of relying only on the results of fluid flow analysis. The results suggest that the sufficiency of the fluid flow method for the analysis of a model depends on the model's concrete parametrization. They also make it clear that the existing criteria for deciding on the sufficiency of the fluid flow method are not robust

    Investigating modularity in the analysis of process algebra models of biochemical systems

    Full text link
    Compositionality is a key feature of process algebras which is often cited as one of their advantages as a modelling technique. It is certainly true that in biochemical systems, as in many other systems, model construction is made easier in a formalism which allows the problem to be tackled compositionally. In this paper we consider the extent to which the compositional structure which is inherent in process algebra models of biochemical systems can be exploited during model solution. In essence this means using the compositional structure to guide decomposed solution and analysis. Unfortunately the dynamic behaviour of biochemical systems exhibits strong interdependencies between the components of the model making decomposed solution a difficult task. Nevertheless we believe that if such decomposition based on process algebras could be established it would demonstrate substantial benefits for systems biology modelling. In this paper we present our preliminary investigations based on a case study of the pheromone pathway in yeast, modelling in the stochastic process algebra Bio-PEPA

    Improved Continuous Approximation of PEPA Models through Epidemiological Examples

    Get PDF
    We present two individual based models of disease systems using PEPA (Performance Evaluation Process Algebra). The models explore contrasting mechanisms of disease transmission: direct transmission (e.g. measles) and indirect transmission (e.g. malaria, via mosquitos). We extract ordinary differential equations (ODEs) as a continuous approximation to the PEPA models using the Hillston method and compare these with the traditionally used ODE disease models and with the results of stochastic simulation. Improvements to the Hillston method of ODE extraction for this context are proposed, and the new results compare favourably with stochastic simulation results and to ODEs derived for equivalent models in WSCCS (Weighted Synchronous Calculus of Communicating Systems)
    corecore