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Amalgamation of Transition Sequences in
the PEPA Formalism∗

JANE HILLSTON
The University of Edinburgh, Scotland

JOANNA TOMASIK
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Abstract

This report presents a formal approach to reducing sequences in PEPA
components. Performing the described amalgamation procedure we may re-
move, from the underlying Markov chain, those states for which local de-
tailed balance equations cannot be formulated. This transformation may lead
to a simpler model with product form solution. Some classes of reduced mod-
els preserve those performance measures which we are interested in and,
moreover, the steady state solution is much easier computationally.

Keywords
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1 Introduction

Construction and solution of a large Markov model of a real system is not a trivial
task since the number of reachable states is very large and transitions between
them do not follow an easily predictable pattern. The modeller faces the prob-
lem of creating and solving an infinitesimal generator matrixQ whilst coping
with limited time/space computational resources and numerical precision. Using
appropriate tools, such as Stochastic Process Algebras (for example: PEPA [5],
TIPP [4], EMPA [1]) or the Stochastic Automata Network method [10], may
help decompose the modelling task and express the model as a multidimensional
Markov chain. Each of these methods lacks the versatility to deal with an arbitrary
model, but each can treat some classes of models efficiently. The advantage of the
modular approach to defining a Markov chain may be exploited not only when
writing its description (the modeller can look at each sub-model separately) but

∗This work was supported by the Engineering and Physical Sciences Research Council via the
COMPA project (G/L10215).
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also when solving it because possible state reductions, or even calculations, may
be performed for processes smaller than the global one.

A class of models for which compositionality can be fully exploited are the so-
calledproduct formmodels. Such models are expressed as interactions of simple
submodels and their steady state solution is a function of partial solutions of these
elementary components. At the Markov chain level, fluxes between states fulfil lo-
cal balance equations, which are more convenient to formulate and to solve than
global balance equations, but which place restrictions on how models may be con-
structed. For example, for reversible models [8], detailed balance must exist be-
tween each pair of states, i.e. for every pair of statesxi andxj , π(xi)qi, j = π(xj)qj ,i ,
whereπ(·) is the steady state probability andqi, j is the instantaneous transition
rate. This subclass of product form models has been characterised syntactically in
PEPA [6], meaning that the satisfaction of the detailed balance condition can be
recognised without recourse to the global state space. However, the restrictions
result in structures which are rarely encountered when modelling real systems.

Nevertheless, product form models are also useful as targets for transforma-
tion and given a particular performance measure, a “close” product form one may
be substituted to bound the desired measure. In [3], van Dijk presents his approach
towards transforming an initial Markov chain into one which has product form
solution and for which a chosen performance measure is bounded from above or
below. In [11] this approach is applied to some examples, which do not have prod-
uct form solution, in order to find upper and lower bounds of an arbitrary chosen
performance measure, using reversible PEPA models as the target for transforma-
tion. In this paper we give a more formal description of transforming a Markov
chain into another, with product form solution, at the PEPA component level. Our
goal is to remove Markov chain states for which detailed local balance equations
are not satisfied and to bound performance measures using the new Markov chain.

The next section contains a short description of the PEPA formalism. Section 3
contains descriptions of formal tools we will use to perform activity amalgamation
and discusses how the amalgamation procedure affects steady state probabilities
in some cases. An extended version of this paper is presented in [7].

2 Outline of the PEPA Formalism

Entities of Performance Evaluation Process Algebra (PEPA) [5] are termed com-
ponents. A componentP can perform actiona, a= (α, r), a∈Act(P), whereα is
an activity type,α ∈ A(P), andr is a transition rate according to an exponential
distribution,r ∈ RI +, and RI + is a set of positive real numbers together with the
symbol> indicating unspecified transition rate. The set of types enabled in all
derivatives ofP, i.e. within the life cycle ofP, is termed~A(P). Components can
interact by the use of the PEPA operations:(α, r).P, P+ Q, P ��

L
Q, P/H,

def=,
whereL ⊆ A(P) is a set of types over which cooperation between components is



J. Hillston, J. Tomasik: Amalgamation of Transition Sequences 3

performed,H ⊆ A(P) is a set of types which are replaced in the componentP by
the undefined typeτ. The listed PEPA combinators are named: prefix, choice, co-
operation, hiding, definitional equality, respectively. Alternatively,P��

/0
Q may

be written asP ‖Q. Details of the PEPA semantics are presented in [5].
We now define some terminology which we will use later in the paper.

Definition 1 Theapparent rateof action typeα in component P is denoted rα(P)
and is given by:

rα((β, r).P) =
{

r, if α = β
0, if α 6= β rα(P+Q) = rα(P)+ rα(Q)

rα(P/H) =
{

rα(P), if α 6∈ H
0, if α ∈ H

rα(P��
L

Q) =
{

rα(P)+ rα(Q), if α 6∈ L
min(rα(P), rα(Q)), if α ∈ L

For cooperation, ifα is in the cooperation set, the slowest participant determines
the rate of the shared action.

Definition 2 If P0
(α,r)
−−−→ P1, then P1 is a (one-step)derivativeof P0. More gener-

ally, if P0
(α0,r0)−−−→ P1 · · ·

(αn−1,rn−1)−−−→ Pn, then Pn is a derivativeof P0.

Definition 3 The derivative setof a PEPA component P is denotedds(P) and
defined as the smallest set of components such that if P

def= P0 then P0 ∈ ds(P); and

if Pi ∈ ds(P) and there exists a∈ Act(Pi) such that Pi
a−−−→ Pj then Pj ∈ ds(P).

Syntactically, PEPA components are divided into two groups, model compo-
nentsM and sequential componentsS (whereX denotes a constant which is a
sequential component):

S ::= (α, r).S | S+S | X M ::= S | M ��
L

M | M/H

3 Amalgamation of Sequences

In this section we describe a transformation procedure for PEPA models. Firstly,
we definelocal sequencesin PEPA sequential components building up a model.
Secondly, we describe how the activity type is chosen to label the amalgamated
transition. Thirdly, we define a surjective function which describes the amalga-
mation procedure. Finally, we propose a classification, discuss computation of
the new transition rate and give examples of local sequences according to the
introduced classifying scheme.

3.1 Local Sequences inside a PEPA Component

Firstly, we define an internal structure of a PEPA component which destroys its
potential reversibility.
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Definition 4 A pair of activity types(αP,αS) form a local sequencein a compo-

nent X0 iff, for all X j1, Xj2, such that Xj1,Xj2 ∈ ds(X0), Xj1 6≡ Xj2, Xj1

(αP,r j12)
−−−→ Xj2

and Xj2 is only an one-step derivative of Xj1, there exists a unique Xj3, such that

Xj3 ∈ ds(X0), Xj2 6≡ Xj3, Xj2

(αS,r j23)
−−−→ Xj3, Xj3 is the only one-step derivative of Xj2.

In a local sequence(αP,αS), αP is termed thepredecessorandαS thesuccessor.
Figure 1 depicts a local sequence inX, (τ,αS). In this case the undefined typeτ

is the predecessor andαS is the successor. For the stateXk we cannot write a local
balance equation and we do not want to include this state in our calculation. Thus

we replace the componentX by another,X′, in whichX′
j

(ξ,R)
−−−→ X′

l . The statesX′
j

andX′
l are images ofXj andXl respectively in a transforming function. However,

we have to decide what typeξ is and what is the transition rate.

3.2 Choice of Activity Type

The synchronising actions in a PEPA model cannot be of undefined type. If no re-
ward is associated with the type of an independent action it may be hidden without
loss of information. Thus, when only one type of the local sequence(αP,αS) is a
cooperating one, we pick it as the type of the new transition.

In the case when both actions are either synchronised or independent we as-
sume that the succeeding activity type of a sequence absorbs the preceding one.
Our assumption is a direct result of an emphasis on observation.

Consider componentX shown in Figure 1. Starting from stateXj , the compo-
nent performs its internal action(τ,λ) and an observer cannot say of what type
the activity is. When the internal action finishes, he can recognise the activity type
of the consecutive action (assuming it is of “public” type). From his perspective,
the change of state toXk is of little interest. He may suppose that the time of pass-
ing from Xj to Xl has a distribution defined by a Coxian distribution equal to the
convolution of the “private” and “public” exponential distributions with parame-
tersλ andrS, respectively and the type of this transition is the type of the visible
transition, i.e.αS. This reasoning suggests that the activity typeξ (Section 3.1)
resulting from the amalgamation procedure should be the successor typeαS.

Xj Xl
IN

OUT IN

OUT

(τ,λ) (αS, rS)
Xk

Figure 1: A local sequence in componentX with internal typeτ as predecessor

3.3 Amalgamation Procedure

To begin, we state precisely how “an internal element” (such asXk in Figure 1),
which will be removed due to the amalgamation procedure, may be identified.
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Definition 5 A derivative X∗ is an internal sequential derivativeof a local se-
quence(αP,αS) in X if its enabled activity multi-set is{|(αS, rS) |} and it is an
αP-derivative of a component whose enabled activity multi-set is{|(αP, rP) |}.

A function which amalgamates local sequences and removes their internal
sequential derivative is defined as follows:

Definition 6 A function f : ds(X) −→ ds(X′) is a sequential epimorphismfrom
X to X′ over a local sequence(αP,αS) if it is a surjective function such that

1. if X∗ ∈ ds(X) and X∗ is not an internal sequential derivative of local se-
quence(αP,αS), then X∗ and f(X∗) are identical,

2. for any a∈ Act(X∗), not part of local sequence(αP,αS), the set of a-
derivatives of f(X∗) equals the f -image of the set of a-derivatives of X∗,

3. for activities(αP, rP) and (αS, rS), such that X∗0
(αP,rP)
−−−→ X∗

1

(αS,rS)
−−−→ X∗

2 , there
is exactly one derivative of f(X∗

0 ), which may be reached by performing

(αS,R) such that f(X∗
0 )

(αS,R)
−−−→ f (X∗

2 ). The expected delay between f(X∗
0 )

and f(X∗
2 ) is the same as the expected delay between X∗

0 and X∗2 .

Sequential epimorphism is a generalisation of weak isomorphism defined in [5].

3.4 Classification of Sequences to be Amalgamated

Let M = 4(X(i)
0 ), i = 0,1, . . . ,n−1, be a PEPA model made up ofn sequential

components, theX(i)
0 . The4 operator composes theX(i)

0 using PEPA’s composi-
tion and hiding combinators. Letα be an activity type which may occur inM, i.e.
α ∈ ~A(M). We use shorthands as stated below:

M : the set of all the componentsX(i)
0 , i = 0,1, . . . ,n−1,

M α, /0: the set of all componentsX(i)
0 in which no action of typeα occurs,

M α,∗: the set of all componentsX(i)
0 in which an action of typeα may occur but

these components do not cooperate overα,

M α: the set of all componentsX(i)
0 cooperating over the activity typeα.

Clearly,M=M α, /0∪M α,∗∪M α andM α, /0∩M α,∗=M α,∗∩M α=M α, /0∩M α= /0.
Let a pair of activity types(αP,αS) be a local sequence in some sequential com-

ponentsX(i)
0 of the modelM. We restrict ourselves to the cases listed in Table 1 for

which M αP, /0 = M αS, /0 = /0. If these sets were not empty our classification would
be still valid as long as their elements were cyclic components. We also assume
that each sequence(αP,αS) appears at most once in each sequential component.

To remove ambiguity, in the context of the proposed classification, we give de-
tails of the reduction of local sequences in each case. In some cases, amalgamation
is only possible when certainboundary conditionsare met, i.e. all components in-
volved can be guaranteed to enter or exit the local sequence simultaneously.
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I M αS,∗ = M
a) M αP,∗ = M II M αS = M

III M αS,∗ 6= M ∧M αS 6= M
I M αS,∗ = M

b) M αP = M II M αS = M
III M αS,∗ 6= M ∧M αS 6= M

M αP,∗ 6= M I M αS,∗ = M
c) ∧ II M αS = M

M αP 6= M III
M αS,∗ 6= M

∧
M αS 6= M

? M αP = M αS

?? M αP ∩M αS = /0
??? otherwise

Table 1: Possible manifestations of local sequences in the modelM

Definition 7 A local sequence(αP,αS) in component X, within model M, is a
beginning sequenceiff αP is not a successor in any local sequence in X and a
component whoseαP-derivative is an internal sequential derivative of(αP,αS) in
X, is obtained only after cooperation by all components belonging to the setM αS.

Definition 8 A local sequence(αP,αS) in component X, within model M, is an
ending sequenceiff αS is not a predecessor in any local sequence in X and from
anαS-derivative of an internal sequential component, all outgoing actions require
cooperation of all components belonging to the setM αP.

Based upon these two definitions, illustrated in Figure 2, we are able to define
local sequences which are made up of exactly two actions labelled with activity
typesαP andαS, respectively.

Definition 9 A local sequence(αP,αS) in X included in a model M is astrict
sequencein M if it is a beginning and ending sequence in M.

G>

(δ,d)

Y3

Y2

Y1

Y0

(αP,>)

(αS, rSY )(αS, rSX )

(β,b)

X1

X2

X3

X0

G (αP, rPXY)

W0
def= X0 ��

{αP,γ}Y0

(αS, rSXY)G

X3

(β,b)

X1

X2

X0

(αP, rPX )

G>

(δ,d)
Y3

Y1

Y2

Y0

(αP, rPY)

(αS,>)

U0
def= X0 ��

{αS,γ}Y0

Figure 2: Examples of beginning ((αP,αS) in U0) and ending ((αP,αS) in W0)
sequences; shorthands:G = (γ,g), G> = (γ,>)

Finally, we point out that we assume no reward function is associated with
actions of typeαP or αS for these actions will vanish during the amalgamation
process. The choice of transition rateR will be discussed in the next subsection.
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3.4.1 Phase-type Distribution

When calculating rates for amalgamated transitions we first attribute rates toαP

andαS actions in the global model. Synchronised actions are performed simulta-
neously in a group of components, and will have a rate dictated by the semantics
of cooperation. Other actions are executed independently and their instances inter-
leave; they will have a rate which has a phase-type distribution. Such distributions
are characterised by the time to absorption in a Markov chain, itself characterised
by a matrixQ; absorptionoccurs when all copies of the action have completed.
We construct the Markov chain (and the phase-type distribution) representing the
interleaving as shown in Figure 3 for the 3-dimensional case. The state(1,1,1)
is its absorbing state. Forn independent components, the matrixQ is obtained by

a tensor (Kronecker) sum [2]Q =
n−1L

i=0
Q(i) which has structure:Q =

[
Q∗ q
O 0

]
,

whereQ∗ is an upper triangular matrix, dim(Q∗) = n−1 andq is a column vector
of n−1 elements. The distribution,F(t), of the time to complete the interleavings

(1,1,1)

(0,1,1)

(1,0,1)

(1,1,0)

(0,0,0)

(0,0,1)

(0,1,0)

(1,0,0)
λ2

λ0
λ1

λ2
λ1

λ0

λ2
λ0

λ0

λ1

λ2

λ1
Figure 3: An example of PH-distribution, 3-lattice

in n components is equal to [9]:

F(t) = 1−αeQ∗t1 for t ≥ 0 and F(t) = 0 for t < 0,

where 1is a column vector of sizen−1 all of whose elements are equal to 1 and
α is a row vector containing initial probabilities of lattice states. The pair(α,Q∗)
defines the phase-type distribution. We set the initial vectorα to (1,0, . . . ,0) since
we always start from the state in which all instances of the action are newly en-
abled (state(0,0,0) in Figure 3). The meanm of this distribution may be calcu-
lated by the formula

m=−α(Q∗)−11. (1)

3.4.2 Review of Sequence Cases

We review the cases listed in Table 1. Diagrams illustrating the cases are complex
and for this reason we apply some abbreviations, mostly concerning types of a
local sequence. Independent actions performed in a componentX are written as
aPX or aSX depending on whether they are ofαP or αS type. For synchronised
actions we introduce similar shorthand terms, for exampleAPXY, ASXUZ, where the
lowest subscript is a list of components which cooperate over eitherαP or αS type.
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Case a.I: None of theαP or αS actions are synchronised. Consequently se-
quence amalgamation may be performed entirely at the PEPA component level.
No “boundary condition” is required. (This coincides with weak isomorphism
when both elements of the local sequence have typeτ.) The new transition rate

R(i) in a PEPA sequential componentX(i) is equal to
r
(i)
P r

(i)
S

r
(i)
P +r

(i)
S

, i = 0,1, . . . ,n−1.

Case a.II: All αP actions are performed independently, allαS actions are syn-
chronised. Here we are restricted to beginning sequences only. The activities of
typeαP form ann-lattice in the model. The average time1ΛP

of passing through
this structure is given by Eq. (1). The effective cooperation rateRS in the global

chain is equal to mini(r
(i)
S ). The effective rate of the replacement activity for the

entire strict local sequence is equal toR= RSΛP
RS+ΛP

.

(αS,R)
G

(0′,0′,2′)(2′,2′,0′)

(αS,R∗)

(αS,R) (αS,R∗)

(2′,2′,2′)
(0′,0′,0′)

(αS,R)

G

X′
0

X′
2

(αS,R∗)

Z′0

G>G>

Y′
0

Y′
2 Z′2

(αS,>)

(αP, rPZ)(αP, rPY )
Z0X0 Y0

X1

(αP, rPX )
Y1

Y2

Z1

Z2

(γ,g) (γ,>)

X2

(αS, rS) (αS,>) (αS, rSZ)(γ,>)

aPZ = (αP, rPZ), aSZ = (αS, rSZ), aPX = (αP, rPX ), aPY = (αP, rPY), ASX = (αS, rS)

aPY

aPZ

X1Y1Z2

aSZ

ASX

ASX

aPY

(010)

(011)

(101) (111)

aSZ

X0Y0Z0

X0Y0Z1

X1Y0Z0 X1Y1Z0

aPY

aPZ

aSZ
(102)

X2Y2Z2

aPX aPZ

aPY

X2Y2Z1

aSZ

G
X2Y2Z0ASX

aSZ aPX

X0Y1Z2X0Y0Z2

aPZ

Figure 4: An example of thea.III case,X0 ��
{αS,γ}Y0 ��

{γ} Z0

Case a.III: All αP actions are performed independently, some of theαS actions
are synchronised. Again, we restrict to beginning sequences. All local sequences
are replaced by actions of typeαS. For components inM αS the new transition

rate is computed as
mini(r

(i)
S )Λ

mini(r
(i)
S )+Λ

, whereΛ is an inversion of the mean passage time

through then-lattice formed byαP actions from components inM αS. For com-
ponentsX(i) in M −M αS the amalgamation procedure is performed individually;
the transition rates areR(i)∗ =

rPZ rSZ
rPZ+rSZ

. (See example in Figure 4).
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Case b.I: All αP actions are synchronised and allαS actions are independent.
This case is dual toa.II , so it concerns ending sequences only: firstly an action
of type αP is performed in all the sequential components, secondly the compo-
nents independently execute their own actions of typeαS. As for a.II we set the
transition rate of the new action,R, as an inversion of the mean of the Coxian
distribution of two exponential distributions with parametersRP andΛS.

Case b.II: All model components cooperate over bothαP andαS. Since both el-
ements of the local sequence are synchronised they automatically establish “bound-
ary conditions” for launching and terminating the execution of the sequence.
Thus, in this case a local sequence may be amalgamated even if it is neither a
beginning nor ending sequence. We assume that all sequential components in
the model contain the local sequence and that whenαP is enabled in a deriva-
tive no other actions are also enabled. These conditions guarantee that the com-
ponents must perform each element of the sequence with probability 1.0 (Fig-
ure 5). Under these conditions, and calculatingR as above, we can show that

total
output flux

total
input flux f↓ f↓X0 X1 X2

(αP,mini(r
(i)
P )) (αS,mini(r

(i)
S ))

total
input flux

total
output fluxX′

0 X′
2

(αS,R)

Figure 5: Amalgamation of a sequence for theb.II case, all components building
up a model contain the local sequence(αP,αS); states of the global Markov chain,

X j = (X(0)
j , . . . ,X(N−1)

j ), j = 0,1,2, X′
k = (X′(0)

k , . . . ,X′(N−1)
k ), k = 0,2

π(X0)+ π(X1) = π(X′
0), and all other steady state probabilities are preserved.

(θ,t1)

(γ,g)

X4X1 X2 X3

(κ,k)

X0 (β,b) (αP,rPX ) (αS,rSX )
Z0 Z1

(θ,t3)

(β,>)

U0 U1

(θ,t4)

(γ,>)
(αP,rPY )

(β,>)

Y1 Y2

Y0

(γ,>) Y3

(αS,rSY )(θ,t2)

Figure 6: An example of theb.II model, ((X1 ��
{αP,αS,β,γ}Y1) ��

{ beta}Z0) ��
{γ} U0

We have found that the reduced model preserves throughput of activities, other
than the removedαP, even if some components of the model do not contain the
amalgamated local sequence (see [7] for details). Figure 6 shows an example
model. The initial model consists of 24 states, the amalgamated one, 20. As-
suming that all the initial model’s transition rates are equal to 1.0 we calculate
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throughput ofγ andαS as:ϑγ = 0.11 andϑαS = 0.22 both before and after reduc-
tion.

Case b.III: All αP actions are synchronised and someαS actions are synchro-
nised. Amalgamation in this case may be performed for ending sequences only.

For the submodel consisting ofX(i)
0 components in the setM αP set whose in-

dices are the same as those of elements of the setM αS, the conditions of theb.II
case are fulfilled. The other submodel, the components of which belong toM αS,∗,
satisfies the conditions of theb.I case. The apparent rate of the synchronisedαP

action is calculated from rates in the componentsX(i), RP = mini(r
(i)
P ). The rate

of the synchronisedαS action is equal toRS = min
i:X(i)

0 ∈M αS
(r(i)

S ). The total tran-

sition rate of theαS action we find using Eq. (1) forαS activities ofX(i)
0 ∈ M αS,∗

together with the “cooperation rate”RS.

Case c.I: SomeαP actions are synchronised, allαS actions are performed inde-
pendently. The amalgamation procedure may be performed for ending sequences
only. In the components whose indices belong toM αP the new activity type is
set asαP, in the others asαS. For the first group, the rate of the new action is

R= mini(r
(i)
P )Λ

mini(r
(i)
P )+Λ

, X(i) ∈ M αP, whereΛ is the inversion of the mean computed ac-

cording to formula (1). For the latter group the transition rates are evaluated for

each componentX(i) separately,R(i)∗ = r
(i)
P r

(i)
S

r
(i)
P +r

(i)
S

, X(i) ∈ M −M αP.

Case c.II: SomeαP actions are synchronised, allαS actions are synchronised.
This case consists of instances of thea.II and b.I cases so only beginning se-
quences may be amalgamated. The rate of the synchronisedαS action is equal to

RS = mini(r
(i)
S ). The rate of theαP action synchronised in components inM αP

is RP = mini(r
(i)
P ) and this value is included in the computation of total transition

rate of passing through then-lattice, according to Eq. (1).

Case c.III: Some components of the model cooperate overαP, some of them
overαS. This case has to be considered more carefully, by three sub-cases:
? If M αP = M αS we deal witha.I andb.II applied to two disjoint sets of sequen-
tial components and amalgamation is possible when done independently (Fig. 7).
?? If M αP ∩M αS = /0 the model splits into two sub-models depending on the
activity type,αP or αS, over which synchronisation is carried out. One of them
fulfils casea.II conditions, the other those ofb.I.
??? Some model components cooperate only overαP, some only overαS, some
over both types. Amalgamation is not possible as presented in Figure 8 by an ex-
ample in whichM αP = {Y0,Z0}, M αP,∗ = {X0}, M αS = {X0,Y0}, M αS,∗ = {Z0}.
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(αP, rPXY)

(αS, rSXY)
G

X0

X1

X2

↓f

(γ,>)

Y0

(αP,>)

Y1

(αS,>)
Y2

↓f

G

X′
0

X′
2

(αS,RSXY)
G

Y′
0

Y′
2

(αS,>)

Z′0

Z′2

G ASZ

↓f

Z1

aPZ

aSZ

Z2

Z0

(γ,>)

ASXYASZ

ASZ

ASXY

G(2′,2′,2′)

(0′,0′,0′)

aSZ

aPZ

aPZ

aSXY

aPXY

aSZ

aPXY

aSXY

G

(0,0,0)

(2,2,2)

aPZ = (αP, rPZ ), aSZ = (αS, rSZ ), aPXY = (αP, rPXY ), aSXY = (αS, rSXY ), ASXY = (αS,RSXY), ASZ = (αS,RSZ )

Figure 7: An example of thec.III. ? case, (X0 ��
{αP,αS,γ}Y0) ��

{γ} Z0

(αP, rPYZ)

Y0

Y1

Y2

G>
(αS,>)

G

X0

X1

X2

(αS, rSXY)

(αP, rPX )

Z0

(αP,>)
Z1

Z2

G>
(αS, rSZ)

aSZ

aPX

aSZ

APYZ

APYZ

ASXY

ASXY

G

aSZ
(2,2,2)

aPX

(0,0,0)
aPX

aPX = (αP, rPX ), APYZ = (αP, rPYZ), aSZ = (αS, rSZ), ASXY = (αS, rSXY)

Figure 8: An example of thec.III. ??? case,(X0 ��
{αS,γ}Y0) ��

{αP,γ}Z0

3.4.3 Performance Values Results for the Reviewed Cases

Models of each case investigated in the previous subsection were computed in or-
der to find throughput of transitions not involved in the amalgamation procedure.
Depending on whether the underlying process was insensitive or not, the results
were exact or approximate. In particular for our examples, casesa.II, b.I, b.III,
c.II were found to be insensitive and results were exact, whereas casesa.I, a.III,
b.II, c.I, c.III. ?, c.III. ?? led to approximate results (see [7]).

4 Conclusions and Further Work

In this paper we have investigated the amalgamation of sequences in PEPA com-
ponents in order to obtain a smaller model whilst preserving some features of the
original. The resulting action type is chosen, depending upon whether the amal-
gamated actions are synchronised or not and an observational assumption. We
have definedlocal sequencessuitable for amalgamation and a classification of
their manifestations. For each case we gave an explanation of how to calculate the
transition rate of the new action.

Sequence amalgamation may lead to a model with a reversible Markov chain.
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Further investigation will focus on when the reduced model has this feature and
could be used to efficiently compute bounds of some performance measures. We
will also study when the reduced chain is insensitive leading to exact measures,
relative to the original chain. From a theoretical standpoint, we would like to
establish an equivalence relation based on the notion ofsequential epimorphism.
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