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Abstract

We present two individual based models of disease systems using PEPA (Performance Evaluation Process
Algebra). The models explore contrasting mechanisms of disease transmission: direct transmission (e.g.
measles) and indirect transmission (e.g. malaria, via mosquitos). We extract ordinary differential equa-
tions (ODEs) as a continuous approximation to the PEPA models using the Hillston method and compare
these with the traditionally used ODE disease models and with the results of stochastic simulation. Im-
provements to the Hillston method of ODE extraction for this context are proposed, and the new results
compare favourably with stochastic simulation results and to ODEs derived for equivalent models in WSCCS
(Weighted Synchronous Calculus of Communicating Systems).
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1 Introduction

Increasingly, theoretical computer science techniques such as process algebras are
being used to tackle biological problems [3,15,14]. The belief is that formal specifica-
tion will lead to more insight into the problem being described. Certainly, process
algebras provide different forms of analysis not previously available to biologists.
In the case of epidemiology, the study of disease spread, process algebra gives us
a way to describe individual based models (drawn from observations of individual
behaviour) and to then automatically derive population level models (allowing inves-
tigation of the properties of epidemics, and the result of control methods). Largely,
theoretical biologists have worked at one scale (individual based) or the other (pop-
ulation based), but had no way to move between these scales. Process algebra
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semantics allow a straightforward move from the specification of individual compo-
nents (agents) to the derived behaviour of those components operating in parallel
(the labelled transition system). Recent developments [8,13,4] have additionally
allowed the population level behaviour of a process algebra model to be expressed
as ordinary differential equations (ODEs) or mean field equations (MFEs). This
opens up further possibilities for mathematical analysis and facilitates comparison
with existing mathematical models for these systems. The goal of our work is to
contribute new ways of working in epidemiology through process algebra.

This paper presents models of biological epidemics in the PEPA process alge-
bra [7]. This is a novel use of PEPA. Our aim is to evaluate the suitability of
language features of PEPA for epidemiology, and to compare the results with our
previous modelling work in WSCCS [12]. The most important difference between
the formalisms is the move from actions occurring in discrete time and weighted
choice (WSCCS), to actions occurring in continuous time at a specified rate and
choice driven by competition between rates (PEPA). In addition, PEPA allows syn-
chronisation between multiple components.

A further reason for choosing PEPA over alternative formalisms is the ability to
translate PEPA models into ODEs [8] (the Hillston method). The epidemiological
models presented in this paper provide a way to evaluate this method of deriving
ODEs. The method places some limitations on the form of the PEPA model:

• Cooperating components must share the same local rate (no passive components).
• Actions may not be hidden.
• Cooperation must include all common actions.
• Components of the same type do not cooperate.

Through the models presented here we discover a fifth limitation:

• There should not be implicit choice between independent but distinct components
offering the same action for synchronisation.

We present a modified version of the method here (the Stirling amendment) which
addresses this last limitation and that of passive rates. The contribution of the
paper is therefore twofold: a novel use of PEPA in epidemiology, and an improved
method of deriving ODEs for this context.

The structure of the paper is as follows. Section 2 provides an introduction to
PEPA and ODE derivation as previously described in [8]. Section 3 presents the
epidemiological models and compares the derived ODEs with simulation results.
The insights gained through these models lead to the modified ODE derivation
method presented in Section 4. Finally, we discuss the results in Section 5.

2 PEPA

PEPA has been used to study the performance of a wide variety of sys-
tems [9,1,2,16,10]. As in all process algebras, systems are represented in PEPA
as the composition of components which undertake actions. In PEPA the actions
are assumed to have a duration, or delay. Thus the expression (α, r).P denotes a
component which can undertake an α action, at rate r (where rate is 1/delay) to
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evolve into a component P . Here α ∈ A where A is the set of action types and
P ∈ C where C is the set of component types.

PEPA has a small set of combinators, allowing system descriptions to be built
up as the concurrent execution and interaction of simple sequential components.
We informally introduce the syntax below. More detail can be found in [7]. The
structured operational semantics are shown in Figure 1.

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A def= E)

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Cooperation

E
(α,r)
−−−→ E′

E ��
L

F
(α,r)
−−−→ E′ ��

L
F

(α /∈ L)
F

(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E′ ��

L
F ′

(α ∈ L), R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F ))

Fig. 1. Operational Semantics of PEPA

Prefix: The basic mechanism for describing the behaviour of a system with
a PEPA model is to give a component a designated first action using the prefix
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combinator, denoted by a full stop, which was introduced above. As explained,
(α, r).P carries out an α action with rate r, and it subsequently behaves as P .

Choice: The component P + Q represents a system which may behave either
as P or as Q. The activities of both P and Q are enabled. The first activity to
complete distinguishes one of them: the other is discarded. The system will behave
as the derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of behaviour
associated with components. Constants are components whose meaning is given
by a defining equation. The notation for this is X

def= E. The name X is in scope
in the expression on the right hand side meaning that, for example, X

def= (α, r).X
performs α at rate r forever.

Hiding: The possibility to abstract away some aspects of a component’s be-
haviour is provided by the hiding operator, denoted P/L. Here, the set L identifies
those activities which are to be considered internal or private to the component and
which will appear as the unknown type τ .

Cooperation: We write P ��
L

Q to denote cooperation between P and Q

over L. The set which is used as the subscript to the cooperation symbol, the
cooperation set L, determines those activities on which the cooperands are forced
to synchronise. For action types not in L, the components proceed independently
and concurrently with their enabled activities. We write P ‖ Q as an abbreviation
for P ��

L
Q when L is empty.

If a component enables an activity whose action type is in the cooperation set it
will not be able to proceed with that activity until the other component also enables
an activity of that type. The two components then proceed together to complete
the shared activity. The rate of the shared activity may be altered to reflect the
work carried out by both components to complete the activity. The total capacity
of a component C to carry out activities of type α is termed the apparent rate of α

in P , denoted rα(P ), see Section 2.1 for the definition. Unlike some other stochastic
process algebras, PEPA assumes bounded capacity : a component cannot be made
to perform an activity faster by cooperation, so the rate of a shared activity is the
minimum of the rates of the activity in the cooperating components.

In some cases, when an activity is known to be carried out in cooperation with
another component, a component may be passive with respect to that activity. This
means that the rate of the activity is left unspecified (denoted >) and is determined
upon cooperation by the rate of the activity in the other component. All passive
actions must be synchronised in the final model.

The syntax may be formally introduced by means of the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

where S denotes a sequential component and P denotes a model component which
executes in parallel. C stands for a constant which denotes either a sequential
component or a model component. CS stands for constants which denote sequential
components. The effect of this syntactic separation between these types of constants
is to constrain legal PEPA components to be cooperations of sequential processes,
a necessary condition for an ergodic underlying Markov process.
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2.1 Apparent Rate

The apparent rate at which an action type occurs within a component is of im-
portance when comparing components or when defining how they interact. We
assume that the apparent rate of an action type represents the totally capacity of
a component to carry out activities of that type when it is in its current state.

Definition 2.1 (Apparent Rate) The apparent rate of action of type α in a com-
ponent P , denoted rα(P ), is the sum of the rates of all activities of type α in Act(P ).

(i) rα((β, r).P ) =

 r if β = α

0 if β 6= α

(ii) rα(P + Q) = rα(P ) + rα(Q)

(iii) rα(P/L) =

 rα(P ) if α /∈ L

0 if α ∈ L

(iv) rα(P ��
L

Q) =

 min(rα(P ), rα(Q)) if α ∈ L

rα(P ) + rα(Q) if α /∈ L

The apparent rate will be undefined for component expressions containing un-
guarded variables, i.e. variables which are not prefixed by an activity. Consequently
we do not allow a component to be defined by such an expression.

Note that in cases of cooperation, the apparent rate of the shared activity will
be the minimum of the apparent rates of the components involved, where

m> < n> : for m < n and m,n ∈ Q
r < n> : for all r ∈ R, n ∈ Q

m>+ n> = (m + n)> : m,n ∈ Q
m>
n>

=
m

n
: m,n ∈ Q

In the case of a passive action it is assumed that the corresponding component does
not contribute at all to the work required to complete the shared activity.

2.2 Derivation of ODEs

The semantics of a PEPA model is given by repeatedly applying the rules of Figure 1
to form a labelled transition system (usually termed the derivation graph in PEPA).
When a Markovian interpretation is put on the PEPA model the duration of each
activity is assumed to be a random variable governed by a negative exponential
distribution. In this case the derivation graph can be considered to be the state
transition diagram of a continuous time Markov chain (CTMC). Thus one Marko-
vian state is associated with each syntactic term. Performance analysis is then
carried out in terms of the steady state probability distribution, or the transient
probability distribution, which is extremely costly when the state space is large.

Hillston [8] introduced a novel interpretation of PEPA models, as Ordinary Dif-
ferential Equations. We do not propose to repeat the method here, but to give an
overview of the main points. Essentially the Hillston method produces an alterna-
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tive semantics for PEPA which can be viewed as a continuous approximation of the
model behaviour. The approximation is of the state space, and a crucial motivator
is that this is done without generating the underlying CTMC. This circumvents the
state space explosion problem, and makes investigation of large populations with
state space � 1010 possible. The alternative semantics provides a good approxima-
tion of the CTMC semantics (as shown in [8] by comparing the ODEs to the steady
state likelihoods of the components).

The method is focussed on systems having a large number of repeated compo-
nents (since this is where much improvement can be gained in state space calcula-
tion). Instead of viewing each state in the derivation graph as a syntactic PEPA
form, it is viewed as a numerical vector in which each component is represented
by the number of instances of that component. This aggregation exploits strong
equivalence in PEPA. The numerical vector form for an arbitrary PEPA model is
defined as follows.

Definition 2.2 [Numerical Vector Form] For an arbitrary PEPA model M with n

component types Ci, i = 1, . . . , n, each with Ni distinct derivatives, the numerical
vector form of M, V(M), is a vector with N =

∑n
i=1 Ni entries. The entry vij

records how many instances of the jth local derivative of component type Ci are
exhibited in the current state.

For example, the model of Figure 2 begins with the numerical state vector
((990, 0, 10, 0), (10, 990)) where the first subvector corresponds to numbers of the
local derivatives of component S (SC, I and R), and the second subvector corre-
sponds to numbers of the local derivatives of component Transmitter(Dormant).

The evolution of this state may be regarded as a continuous process represented
by coupled ODEs. For example, for component Cij (the jth local derivative of
component Ci), the change in number of Cij (denoted vij (t)) is given by:

dvij (t)
dt

= −
∑

(α,r)∈Ex(Cij
)

r × min
Ckl

∈Ex(α,r)
(vkl

(t))

+
∑

(α,r)∈En(Cij
)

r × min
Ckl

∈Ex(α,r)
(vkl

(t))

where Ex(Cij ) is the set of activities which are exit activities from a component,

i.e. (α, r) such that there is a transition Cij

(α,r)−→ Cik , for some k. Ex(α, r) denotes
the corresponding set of local derivatives Cik . Exit activities result in a decrease in
the number of component Cij . En(Cik) is the set of actions for which β is an entry

activity, i.e. (β, r) such that there is a transition Cij

(β,r)−→ Cik , for some j. Entry
activities result in an increase in the number of instances of component Cik .

3 SIR models

Kermack and McKendrick [11] introduced the classic SIR model of disease spread
which has been widely used since then. The model is described by three coupled
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ordinary differential equations. The population is split into three groups:

Susceptibles have never had the disease, and may contract it after exposure.

Infecteds have the disease and can pass it on to susceptibles.

Recovereds have previously had the disease and are assumed to be immune to
future infection.

This basic pattern can be easily modified, for example, to allow recovered individuals
to lose immunity and be recycled to the susceptible pool (SIRS model). The models
presented here are both SIRS models.

The most commonly used formulation of the SIRS model is:

dS

dt
=−βSI/N + αR ,

dI

dt
=−γI + βSI/N ,

dR

dt
= γI − αR , (1)

where β is the rate of infection having been contacted, γ is the rate of recovery from
infection and becoming immune, α is the rate of losing immunity and becoming
susceptible again, and N = S + I + R.

Frequency dependent transmission of the disease is used here, since Norman and
Shankland [14] showed that this arises most naturally from process algebra models.
Frequency dependent transmission indicates that the number of contacts made by
a single individual remains fixed, regardless of population size.

In previous work, McCaig [12] has used WSCCS (Weighted Synchronous Cal-
culus of Communicating Systems) [17] to describe a variety of SIR models and to
analyse the Mean Field Equations (MFEs) obtained. As a first step in comparing
WSCCS and PEPA for epidemiology, we look at a fundamental aspect of trans-
mission mechanism. Two particular variants are of interest: direct transmission
and indirect transmission. McCaig proposed in his thesis [12] that, from a process
algebra point of view, all forms of transmission can be reduced to one of these
two types. By considering examples of both types of transmission we have some
confidence that PEPA is generally applicable in epidemiology.

Our models take the form Individuals ��
L

Infrastructure, where the Individuals
are independently operating agents representing the individuals of the system (e.g.
the susceptible, the infected and recovered individuals) and the Infrastructure mod-
els the communication mechanisms between individuals, whether direct or indirect.

3.1 Direct Transmission

Direct transmission requires physical contact between susceptible and infected in-
dividuals. The PEPA model for direct transmission can be seen in Figure 2. The
basic agents are S, I and R, representing Susceptible, Infected and Recovered indi-
viduals respectively. SC represents an aspect of a susceptible individual: one who
has been contacted by an infected individual. Such contact may not automatically
lead to infection (e.g. the immune system fights off the disease with probability pi

at rate ir). These agents all act independently, with no communication between
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S def= (contact ,>).SC

SC def= (infected, pi ∗ ir).I + (no infection, (1− pi) ∗ ir).S

I def= (contact ,>).I + (recover , rr).R

R def= (contact ,>).R + (lose immunity , li).S

Transmitter def= (contact , cr).Transmitter + (recover ,>).Dormant

Dormant def= (infected,>).Transmitter

S [990] ‖ I [10] ��
{infected,contact,recover}

Transmitter [10] ‖ Dormant [990]

Fig. 2. Direct transmission

them (indicated by use of the ‖ operator).
So how does infection happen? The Transmitter agent represents an aspect of

the I agent: the portion which is able to pass on the infection. Once activated, the
Transmitter repeatedly carries out the contact action at rate cr. The number of
Transmitter agents is equal to the number of I agents. When an I agent recovers
(at rate rr), a Transmitter becomes Dormant .

For biological realism all of the S, I and R are available to contact, but only the
S agents may be changed by this contact. If an I agent contacts an R agent (via
Transmitter), then no new infection results.

This model is designed to be as near equivalent as possible to the basic SIR
model presented in McCaig’s thesis [12, p47, Figure 3.1], except for the feature of
losing immunity at rate li introduced here for more biological flexibility. Setting
li = 0 makes the models equivalent. We also set pi = 1 so the SC state acts as a
delay. Note that this does not guarantee infection since all the I may recover before
all the S get the disease.

As it stands, the Hillston method cannot be used to derive ODEs for this model
due to the use of passive rates. This problem is easily overcome by setting all passive
rates to the matching local rate (e.g. all actions (contact,>) become (contact, cr));
however, this is unsatisfactory since passive rates are a natural way to express our
model. Biologically, individuals are contacted by infected individuals whether they
like it or not. Following simplification to remove min terms and replace Transmitter
with the equivalent I, the derived ODEs for this revised model are:

dS/dt =−cr.S + (1− pi).ir.SC + li.R

dSC/dt = cr.S − SC

dI/dt = pi.ir.SC − rr.I

dR/dt = rr.I − li.R (2)

From our experience with mathematical models of disease these equations are
clearly seen to be rather different from expected (e.g. Eqn. (1)). Moreover, the
ODEs do not provide a close approximation for the transient dynamics of the sys-
tem. In epidemiology, transient dynamics are of more interest than steady state,
since we are concerned with whether an epidemic happens, how fast it happens,
where it peaks, and so on. Figure 3 compares the ODE for I only to the results
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Fig. 3. Direct Transmission. On the left: PEPA ODE (solid line), SSA with local rates (dashed
line). On the right: SSA with passive rates (dotted line), SIRS ODE (solid line). Parameter values:
cr = 0.08, ir = 1, li = 0, pi = 1, rr = 0.02. RMS = 269 (left) 25 (right).

of stochastic simulation (PEPA Eclipse plugin [6], mean of 500 simulations using
Gillespie’s algorithm [5]). The graph on the left compares the ODE with simulations
at the local rate. The match is clearly not good, shown by the Root Mean Square
(RMS) value. The graph on the right shows our goal in the form of Eqn. (1) plotted
with simulations at the passive rate. These are, as expected, rather different from
the ODE for the local rate. Note that changing the passive rate to a local rate
speeds up the infection (the simulation peak on the left is higher and earlier than
that on the right).

We move on to indirect transmission.

3.2 Indirect Transmission

Indirect transmission requires no physical contact between susceptible and infected
individuals; the disease is passed via an infected vector (e.g. mosquitos, ticks, rats)
or via an infected touch-surface (e.g. door handles, shared latrines). The PEPA
model for indirect transmission can be seen in Figure 4. This model has been
developed to be equivalent to ODEs derived from the WSSCS model of McCaig [12,
p142, Figure 6.1]. This is a model in which the amount of environment to be infected
is finite and infection in the environment decays probabilistically.

Indirect transmission is stylistically a more natural expression of transmission
for PEPA: the agents on the right hand side of the �� operator represent infected

S def= (contact ,>).SC

SC def= (infected, pi ∗ ir).I + (no infection, (1− pi) ∗ ir).S

I def= (infect env , ier).I + (contact ,>).I + (recover , rr).R

R def= (contact ,>).R + (lose immunity , lir).S

InfEnv def= (contact , cr).InfEnv + (decay , dr).Env

Env def= (infect env,>).InfEnv

S [990] ‖ I [10] ��
{contact,infect env}

Env [10000]

Fig. 4. Indirect transmission
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Fig. 5. Indirect Transmission. On the left: PEPA ODE (solid line), SSA with local rates (dashed
line). On the right: SSA with passive rates (dotted line), WSCCS ODE (solid line). Parameter val-
ues: cr = 0.08, dr = 0.005, ier = 0.01, ir = 1, li = 0, pi = 1, rr = 0.02. RMS = 165 (left) 23 (right). Note
longer time scale than direct transmission.

and non-infected environment (InfEnv and Env) rather than different aspects of the
I agents. Agents S , I and R come into contact with the environment, potentially
resulting in infection.

The derived ODEs (making the same modification to passive rates and simpli-
fying as before) are:

dS/dt =−cr.S + (1− pi).ir.SC + li.R

dSC/dt = cr.S − SC

dI/dt = pi.ir.SC − rr.I

dR/dt = rr.I − li.R

dInfEnv/dt = ier.Env − dr.InfEnv
dEnv/dt =−ier.Env + dr.InfEnv (3)

It is clear something is wrong, because the first four equations above are exactly
the same as Eqn. (2): the amount of infected environment is not used in calculating
the number of new infections. Simulation results are shown in Figure 5. On the
left a significant difference is seen between the local rate simulation results and the
ODE for I from Eqn. (3). On the right, the passive rate simulation results are
compared to ODEs derived from our WSCCS models.

Clearly the models presented here do not fit the pattern expected by the Hillston
method (which works well for models of computer systems). In the following Section
we propose a modification to the method, customised for epidemiological models.

4 Modified Derivation of ODEs: the Stirling amend-
ment

The Hillston method does not give good results for our epidemiological models.
Revisiting the direct transmission example above one reason might be that self-loops
are ignored. In the context of a single agent this makes sense: if I is contacted,
it evolves to agent I so there is no overall change in number of I agents. In the
context of the whole system this does not make sense: I and R absorb contact
actions, meaning there are fewer actions for S (and therefore less infection than
indicated by the ODEs of Eqn. (2)). This latter point illustrates another difference:
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there is an implicit choice between independent but distinct components offering
the same action for synchronisation, i.e. a Transmitter agent may contact any one
of a number of S, I and R agents. Similarly, in indirect transmission the self-looping
of InfEnv determines the number of contact actions and is therefore important to
the system dynamics. The impact of activities on components must be related to
the overall apparent rate of an action in the system, and to the proportion of that
component in the whole population. For example, in direct transmission the overall
rate of contact is determined by the slowest component since S, I and R are passive.
This yields cr.Transmitter. This activity must be “shared out” amongst the S, I and
R, otherwise we are making the biologically implausible assumption that somehow
all contacts get channelled to the susceptible individuals only.

This Section presents two modifications to the Hillston method [8], yielding a
closer match with stochastic simulation results for passive rates. The first modifi-
cation is to add more fine-grained classification of actions in the activity matrix by
adding information about self loops. As a consequence, information about “side” is
required because to calculate the rate correctly we need to know which agents are
collaborating and which are competing. The second modification is to use the stan-
dard apparent rate calculation thereby removing the restriction on passive rates. We
assume that competing components share the same rate (here they are all passive).

Definition 4.1 The Stirling amendment deals with systems of the form PL ��
L

PR.

Hillston introduced the activity matrix, representing exit and entry activities as
-1 and +1. In the activity matrix each row corresponds to a single local derivative.
In the representation of the model as a system of ODEs there is one equation for
each state variable, i.e. for the current number of each local derivative exhibited.
This equation details the impact of the rest of the system on the value of that
state variable. This can be derived automatically from the activity matrix when
we associate a state variable ni with each row of the matrix and a rate constant rj

with each column of the matrix. The number of terms in the ODEs will be equal
to the number of non-zero entries in the corresponding row, each term being based
on the rate of the activity associated with that column. The Stirling amendment
adds the notions of side and self loops to the activity matrix.

Definition 4.2 [Activity Matrix] For a model with NA activities and ND distinct
local derivatives, the activity matrix Ma is an ND ×NA matrix, and the entries are
defined as follows.

(di, aj) =



+1L if aj is an entry activity of di, di ∈ PL

−1L if aj is an exit activity of di, di ∈ PL

+1R if aj is an entry activity of di, di ∈ PR

−1R if aj is an exit activity of di, di ∈ PR

SLL if aj is a self loop of di, di ∈ PL

SLR if aj is a self loop of di, di ∈ PR

0 otherwise.
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//Form one ODE for each local derivative/state variable
For i = 1...ND

//Find the activities involving this derivative
For j = 1....NA

If Ma(i, j) 6= 0
//Form exit sets and self loop sets for activity j

ExL(j) = ∅; ExR(j) = ∅
LoopL(j) = ∅; LoopR(j) = ∅
For k = 1...ND

If Ma(k, j) = −1S

ExS(j) = ExS(j) ∪ {k}
If Ma(k, j) = −SLS

LoopS(j) = LoopS(j) ∪ {k}
//Record the impact of each such activity
If Ma(i, j) = +1S

Add +rj(Sys)× nz(t)/
∑

k∈ExS(j)∪LoopS(j)

nk(t)

to the equation where nz
(j,r)−→ ni.

If Ma(i, j) = −1S

Add −rj(Sys)× ni(t)/
∑

k∈ExS(j)∪LoopS(j)

nk(t)

to the equation

Fig. 6. Pseudo-code for generating the set of ODEs

In addition, the rate of activity is calculated differently. Hillston uses the local
rate (and these were all assumed to be the same). The new rate here is the overall
apparent rate rα(Sys) multiplied by component contribution. For row di, if the
matrix entry subscript is L (say) then the contribution of di to the activity is
ni(t)/

∑
k∈ExL(j)∪LoopL(j) nk(t). That is, the sum of all components tagged −1L or

SLL in that column. This change is specified in the amended algorithm of Figure 6.
As before there will be one ODE in the system for each row of the matrix. SL

entries do not add terms to the ODEs.
Revisiting the model of Sections 3.1, the modified equations for direct transmis-

sion are:

dS/dt =− cr.S.I

S + I + R
+ (1− pi).ir.SC + li.R

dSC/dt =
cr.S.I

S + I + R
− SC

dI/dt = pi.ir.SC − rr.I

dR/dt = rr.I − li.R (4)

Note that only the transmission term has changed. The apparent rate calculation
for contact results in min(cr.Transmitter,>(S + I + R)) which is equal to cr.I since
N(Transmitter, t) = N(I, t).
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For indirect transmission (Section 3.2) the Stirling amendment produces the
following equations:

dS/dt =−cr.S.InfEnv
S + I + R

+ (1− pi).ir.SC + li.R

dSC/dt =
cr.S.InfEnv
S + I + R

− SC

dI/dt = pi.ir.SC − rr.I

dR/dt = rr.I − li.R

dInfEnv/dt = ier.I − dr.InfEnv
dEnv/dt =−ier.I + dr.InfEnv (5)

The apparent rate calculation for contact results in min(ier.I,>.Env). We as-
sume this results in ier.I since N(Env, 0) is chosen so that ∀t.N(Env, t) > 0 .

The graphs of Figure 7 and Figure 8 show the Stirling amendment ODEs plotted
against passive rate simulation results. Figure 7 additionally shows the standard
ODE (1) for I while Figure 8 shows the ODE derived from our WSCCS models.
It can be seen that there is now an excellent match with the other ODE (identical
for indirect transmission), and a better match to the stochastic simulation results
as shown by the RMS value. The match is rather poorer for indirect transmission

Fig. 7. Direct Transmission: SSA with passive rates (dotted line), SIRS ODE (solid line), new PEPA ODE
(dashed line). Parameters as before. RMS = 13.

Fig. 8. Indirect Transmission: SSA with passive rates (dotted line), WSCCS ODE (solid line), new PEPA
ODE (dashed line). Parameters as before. RMS = 23.
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than for direct transmission.
For indirect transmission, an important feature of the WSCCS models was

whether a finite or infinite environment is used. In the PEPA model we have a
finite environment; however, we have set the number of environment components
so high as to be effectively infinite (for this number of S, I and R). The equa-
tions obtained provide a good match with both the finite and infinite environment
equations of McCaig [12, p141 and p152], and syntactically are closest to those for
infinite environment.

5 Discussion

We have presented two models of disease spread in PEPA. These follow the main
classification of transmission into direct and indirect transmission. The first obser-
vation is that it is possible to model these different mechanisms at all in PEPA. The
second observation is that indirect transmission is slightly more naturally expressed
in PEPA. Use of PEPA provides considerable advantages over use of WSSCS in
terms of tool support, links to other formalisms, and active language developments
for biology.

ODE derivation from these models highlighted limitations of the Hillston
method, but it should be noted that the Hillston method was developed for mod-
els of computer systems and not for models of disease spread. In the context of
epidemiology we presented a modification of this method, based on our experience
with WSCCS. The resulting ODEs provide a better fit to the results of stochastic
simulation. Current work is underway to fine tune the method, and to establish
the precise relationship between the Hillston method and the Stirling amendment.
Even if shown to be more general than the Hillston method, the method presented
here does not apply to all PEPA models. For example, hidden actions are not
considered.

Cardelli [4] has also developed a method of deriving ODEs from process algebra
models. The motivation there is to provide a process algebra semantics matching the
mass action behaviour of chemical systems. This therefore presents a new semantics
which is not related to the usual synchronisation semantics of process algebras. In
our work it is important to be able to move between the scales of individual and
population in such a way that the transient dynamics of the system are preserved
(i.e. that the ODE approximation matches the CTMC semantics).

Use of process algebra for epidemiology provides new insight into disease spread
because it is possible to rigorously justify the population level ODEs in terms of
observed individual behaviour. More work in this area remains to be carried out.
This is planned as part of the System Dynamics project mentioned below. It is
also planned to apply the knowledge gained in modelling biological diseases back
to computer systems. An obvious candidate for such modelling is the spread of
computer viruses and other malware.
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