112 research outputs found

    Alternative approaches to the legal, institutional and financial aspects of developing an inter-island electrical transmission cable system

    Get PDF
    This study (I) delineates three comprehensive alternative scenarios for the development, financing, construction, ownership, regulation and operation of an inter-island electric energy transmission cable systemDepartment of Planning and Economic Development, State of Hawai

    The PDK1 master kinase is over-expressed in acute myeloid leukemia and promotes PKC-mediated survival of leukemic blasts

    Get PDF
    PDK1 is a master kinase that activates at least six protein kinase groups including AKT, PKC and S6K and is a potential target in the treatment of a range of malignancies. Here we show overexpression of PDK1 in over 40% of myelomonocytic acute leukemia patients. Overexpression of PDK1 occurred uniformly throughout the leukemic population, including putative leukemia-initiating cells. Clinical outcome analysis revealed PDK1 overexpression was associated with poorer treatment outcome. Primary acute myeloid leukemia blasts over-expressing PDK1 showed improved in vitro survival and ectopic expression of PDK1 promoted the survival of myeloid cell lines. Analysis of PDK1 target kinases revealed that PDK1 overexpression was most closely associated with increased phosphorylation of PKC isoenzymes and inhibition of PKC strongly inhibited the survival advantage of PDK1 over-expressing cells. Membrane localization studies implicated PKCα as a major target for PDK1 in this disease. PDK1 over-expressing blasts showed differential sensitivity to PDK1 inhibition (in the low micromolar range) suggesting oncogene addiction, whilst normal bone marrow progenitors were refractory to PDK1 inhibition at effective inhibitor concentrations. PDK1 inhibition also targeted subpopulations of leukemic blasts with a putative leukemia-initiating cell phenotype. Together these data show that overexpression of PDK1 is common in acute myelomonocytic leukemia and is associated with poorer treatment outcome, probably arising from the cytoprotective function of PDK1. We also show that therapeutic targeting of PDK1 has the potential to be both an effective and selective treatment for these patients, and is also compatible with current treatment regimes

    Cord blood-derived quiescent CD34+ cells are more transcriptionally matched to AML blasts than cytokine-induced normal human hematopoietic CD34+ cells

    Get PDF
    Acute myeloid leukemia (AML) is characterized by developmental arrest, which is thought to arise from transcriptional dysregulation of myeloid development programs. Hematopoietic stem and progenitor cells (HSPCs) isolated from human blood are frequently used as a normal comparator in AML studies. Previous studies have reported changes in the transcriptional program of genes involved in proliferation, differentiation, apoptosis, and homing when HSPCs were expanded ex vivo. The intrinsic functional differences between quiescent and dividing CD34+ HSPCs prompted us to determine whether fresh or cytokine-induced cord blood-derived CD34+ HSPCs are a more appropriate normal control compared to AML blasts. Based on principal component analysis and gene expression profiling we demonstrate that CD34+ HSPCs that do not undergo ex vivo expansion are transcriptionally similar to minimally differentiated AML blasts. This was confirmed by comparing the cell cycle status of the AML blasts and the HSPCs. We suggest that freshly isolated CD34+ HSPCs that do not undergo ex vivo expansion would serve as a better control to identify novel transcriptional targets in the AML blast population

    Combination of a mitogen‐activated protein kinase inhibitor with the tyrosine kinase inhibitor pacritinib combats cell adhesion‐based residual disease and prevents re‐expansion of FLT3 ‐ITD acute myeloid leukaemia

    Get PDF
    Minimal residual disease (MRD) in acute myeloid leukaemia (AML) poses a major challenge due to drug insensitivity and high risk of relapse. Intensification of chemotherapy and stem cell transplantation are often pivoted on MRD status. Relapse rates are high even with the integration of first‐generation FMS‐like tyrosine kinase 3 (FLT3) inhibitors in pre‐ and post‐transplant regimes and as maintenance in FLT3 ‐mutated AML. Pre‐clinical progress is hampered by the lack of suitable modelling of residual disease and post‐therapy relapse. In the present study, we investigated the nature of pro‐survival signalling in primary residual tyrosine kinase inhibitor (TKI)‐treated AML cells adherent to stroma and further determined their drug sensitivity in order to inform rational future therapy combinations. Using a primary human leukaemia‐human stroma model to mimic the cell–cell interactions occurring in patients, the ability of several TKIs in clinical use, to abrogate stroma‐driven leukaemic signalling was determined, and a synergistic combination with a mitogen‐activated protein kinase (MEK) inhibitor identified for potential therapeutic application in the MRD setting. The findings reveal a common mechanism of stroma‐mediated resistance that may be independent of mutational status but can be targeted through rational drug design, to eradicate MRD and reduce treatment‐related toxicity

    Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.

    Get PDF
    We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models

    The future of Japanese encephalitis vaccination: expert recommendations for achieving and maintaining optimal JE control

    Get PDF
    Vaccines against Japanese encephalitis (JE) have been available for decades. Currently, most JE-endemic countries have vaccination programs for their at-risk populations. Even so, JE remains the leading recognized cause of viral encephalitis in Asia. In 2018, the U.S. Centers for Disease Control and Prevention and PATH co-convened a group of independent experts to review JE prevention and control successes, identify remaining scientific and operational issues that need to be addressed, discuss opportunities to further strengthen JE vaccination programs, and identify strategies and solutions to ensure sustainability of JE control during the next decade. This paper summarizes the key discussion points and recommendations to sustain and expand JE control

    Prognostic impact of <i>CEBPA </i>mutational subgroups in adult AML

    Get PDF
    Despite recent refinements in the diagnostic and prognostic assessment of CEBPA mutations in AML, several questions remain open, i.e. implications of different types of basic region leucin zipper (bZIP) mutations, the role of co-mutations and the allelic state. Using pooled primary data analysis on 1010 CEBPA-mutant adult AML patients, a comparison was performed taking into account the type of mutation (bZIP: either typical in-frame insertion/deletion (InDel) mutations (bZIP InDel), frameshift InDel or nonsense mutations inducing translational stop (bZIP STOP) or single base-pair missense alterations (bZIP ms), and transcription activation domain (TAD) mutations) and the allelic state (single (smCEBPA) vs. double mutant (dmCEBPA)). Only bZIP InDel patients had significantly higher rates of complete remission and longer relapse free and overall survival (OS) compared with all other CEBPA-mutant subgroups. Moreover, co-mutations in bZIP InDel patients (e.g. GATA2, FLT3, WT1 as well as ELN2022 adverse risk aberrations) had no independent impact on OS, whereas in non-bZIP InDel patients, grouping according to ELN2022 recommendations added significant prognostic information. In conclusion, these results demonstrate bZIP InDel mutations to be the major independent determinant of outcome in CEBPA-mutant AML, thereby refining current classifications according to WHO (including all dmCEBPA and smCEBPA bZIP) as well as ELN2022 and ICC recommendations (including CEBPA bZIP ms). (Figure presented.)</p

    Global Atmospheric Budget of Acetone: Air-Sea Exchange and the Contribution to Hydroxyl Radicals

    Get PDF
    Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere

    Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals

    Get PDF
    Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere
    • 

    corecore