35 research outputs found

    Von obligater Anaerobiose zur Aerotoleranz – Die oxidative Stressantwort von Clostridium acetobutylicum

    Get PDF
    Innerhalb der Arbeit wurde die Regulation der O2-abhängigen Genexpression in dem als obligat anaerob klassifizierten Eubakterium Clostridium acetobutylicum untersucht. Dabei wurde das Protein PerR als zentraler Repressor der O2-Stressantwort von C. acetobutylicum identifiziert. PerR reguliert alternative Enzyme des zentralen Energistoffwechsels und eines reduktives Entgiftungssystems. Diese Ergebnisse zeigten, dass obligate anaerobe Organismen, entgegen früheren Annahmen, über verschiedene Anpassungsmechanismen gegenüber O2 verfügen.This work analyzed the regulation of O2 dependent gene expression in the obligate anaerobe eubacterium Clostridium acetobutylicum. The protein PerR was identified as the central repressor of the O2 stress reponse of C. acetobutylicum. PerR regulates alternative enzymes of its central energy metabolism as well as a reductive detoxification system. These results gave evidence that even obligate anaerobes employ a variety of mechanisms to adapt to environmental O2

    Kinetics and phospholipid specificity of apolipoprotein N-acyltransferase.

    Get PDF
    International audienceThe enzyme apolipoprotein N-acyltransferase (Lnt) is an integral membrane protein that catalyzes the last step in the post-translational modification of bacterial lipoproteins. Lnt undergoes covalent modification in the presence of phospholipids resulting in a thioester acyl-enzyme intermediate. It then transfers the acyl chain to the α-amino group of the N-terminal diacylglyceryl-modified cysteine of apolipoprotein, leading to the formation of mature triacylated lipoprotein. To gain insight into the catalytic mechanism of this two-step reaction, we overproduced and purified the enzyme of Escherichia coli and studied its N-acyltransferase activity using a novel in vitro assay. The purified enzyme was fully active, as judged by its ability to form a stable thioester acyl-enzyme intermediate and N-acylate the apo-form of the murein lipoprotein Lpp in vitro. Incorporation of [(3)H]palmitate and mass spectrometry analysis demonstrated that Lnt recognized the synthetic diacylglyceryl-modified lipopeptide FSL-1 as a substrate in a mixed micelle assay. Kinetics of Lnt using phosphatidylethanolamine as an acyl donor and FSL-1 as a substrate were consistent with a ping-pong type mechanism, demonstrating slow acyl-enzyme intermediate formation and rapid N-acyl transfer to the apolipopeptide in vitro. In contrast to earlier in vitro observations, the N-acyltransferase activity was strongly affected by the phospholipid headgroup and acyl chain composition

    Visualizing the ultra-structure of microorganisms using table-top extreme ultraviolet imaging

    Full text link
    Table-top extreme ultraviolet (EUV) microscopy offers unique opportunities for label-free investigation of biological samples. Here, we demonstrate ptychographic EUV imaging of two dried, unstained model specimens: germlings of a fungus (Aspergillus nidulans), and bacteria (Escherichia coli) cells at 13.5 nm wavelength. We find that the EUV spectral region, which to date has not received much attention for biological imaging, offers sufficient penetration depths for the identification of intracellular features. By implementing a position-correlated ptychography approach, we demonstrate a millimeter-squared field of view enabled by infrared illumination combined with sub-60 nm spatial resolution achieved with EUV illumination on selected regions of interest. The strong element contrast at 13.5 nm wavelength enables the identification of the nanoscale material composition inside the specimens. Our work will advance and facilitate EUV imaging applications and enable further possibilities in life science

    The isoprenyl chain length of coenzyme Q mediates the nutritional resistance of fungi to amoeba predation

    No full text
    Saeed N, Valiante V, Kufs JE, Hillmann F. The isoprenyl chain length of coenzyme Q mediates the nutritional resistance of fungi to amoeba predation. mBio . 2024.Amoebae are environmental predators feeding on bacteria, fungi, and other eukaryotic microbes. Predatory interactions alter microbial communities and impose selective pressure toward phagocytic resistance or escape which may, in turn, foster virulence attributes. The ubiquitous fungivorous amoeba Protostelium aurantium has a wide prey spectrum in the fungal kingdom but discriminates against members of the Saccharomyces clade, such as Saccharomyces cerevisiae and Candida glabrata. Here, we show that this prey discrimination among fungi is solely based on the presence of ubiquinone as an essential cofactor for the predator. While the amoeba readily fed on fungi with CoQ presenting longer isoprenyl side chain variants CoQ8-10, such as those from the Candida clade, it failed to proliferate on those with shorter CoQ variants, specifically from the Saccharomyces clade (CoQ6). Supplementing non-edible yeast with CoQ9 or CoQ10 rescued the growth of P. aurantium, highlighting the importance of a long isoprenyl side chain. Heterologous biosynthesis of CoQ9 in S. cerevisiae by introducing genes responsible for CoQ9 production from the evolutionary more basic Yarrowia lipolytica complemented the function of the native CoQ6. The results suggest that the use of CoQ6 among members of the Saccharomyces clade might have originated as a predatory escape strategy in fungal lineages and could be retained in organisms that were able to thrive by fermentation.; IMPORTANCE: Ubiquinones (CoQ) are universal electron carriers in the respiratory chain of all aerobic bacteria and eukaryotes. Usually 8-10 isoprenyl units ensure their localization within the lipid bilayer. Members of the Saccharomyces clade among fungi are unique in using only 6. The reason for this is unclear. Here we provide evidence that the use of CoQ6 efficiently protects these fungi from predation by the ubiquitous fungivorous amoeba Protostelium aurantium which lacks its own biosynthetic pathway for this vitamin. The amoebae were starving on a diet of CoQ6 yeasts which could be complemented by either the addition of longer CoQs or the genetic engineering of a CoQ9 biosynthetic pathway

    Convergent evolution of tRNA gene targeting preferences in compact genomes

    No full text
    Background: In gene-dense genomes, mobile elements are confronted with highly selective pressure to amplify without causing excessive damage to the host. The targeting of tRNA genes as potentially safe integration sites has been developed by retrotransposons in various organisms such as the social amoeba Dictyostelium discoideum and the yeast Saccharomyces cerevisiae. In D. discoideum, tRNA gene-targeting retrotransposons have expanded to approximately 3 % of the genome. Recently obtained genome sequences of species representing the evolutionary history of social amoebae enabled us to determine whether the targeting of tRNA genes is a generally successful strategy for mobile elements to colonize compact genomes. Results: During the evolution of dictyostelids, different retrotransposon types independently developed the targeting of tRNA genes at least six times. DGLT-A elements are long terminal repeat (LTR) retrotransposons that display integration preferences similar to 15 bp upstream of tRNA gene-coding regions reminiscent of the yeast Ty3 element. Skipper elements are chromoviruses that have developed two subgroups: one has canonical chromo domains that may favor integration in centromeric regions, whereas the other has diverged chromo domains and is found similar to 100 bp downstream of tRNA genes. The integration of D. discoideum non-LTR retrotransposons similar to 50 bp upstream (TRE5 elements) and similar to 100 bp downstream (TRE3 elements) of tRNA genes, respectively, likely emerged at the root of dictyostelid evolution. We identified two novel non-LTR retrotransposons unrelated to TREs: one with a TRE5-like integration behavior and the other with preference similar to 4 bp upstream of tRNA genes. Conclusions: Dictyostelid retrotransposons demonstrate convergent evolution of tRNA gene targeting as a probable means to colonize the compact genomes of their hosts without being excessively mutagenic. However, high copy numbers of tRNA gene-associated retrotransposons, such as those observed in D. discoideum, are an exception, suggesting that the targeting of tRNA genes does not necessarily favor the amplification of position-specific integrating elements to high copy numbers under the repressive conditions that prevail in most host cells

    Exploring Virulence Determinants of Filamentous Fungal Pathogens through Interactions with Soil Amoebae

    No full text
    Infections with filamentous fungi are common to all animals, but attention is rising especially due to the increasing incidence and high mortality rates observed in immunocompromised human individuals. Here, Aspergillus fumigatus and other members of its genus are the leading causative agents. Attributes like their saprophytic life-style in various ecological niches coupled with nutritional flexibility and a broad host range have fostered the hypothesis that environmental predators could have been the actual target for some of their virulence determinants. In this mini review, we have merged the recent findings focused on the potential dual-use of fungal defense strategies against innate immune cells and soil amoebae as natural phagocytes. Well-established virulence attributes like the melanized surface of fungal conidia or their capacity to produce toxic secondary metabolites have also been found to be protective against the model amoeba Dictyostelium discoideum. Some of the recent advances during interaction studies with human cells have further promoted the adaptation of other amoeba infection models, including the wide-spread generalist Acanthamoeba castellanii, or less prominent representatives like Vermamoeba vermiformis. We further highlight prospects and limits of these natural phagocyte models with regard to the infection biology of filamentous fungi and in comparison to the phagocytes of the innate immune system

    Conidial Melanin of the Human-Pathogenic Fungus"Aspergillus fumigatus" Disrupts Cell Autonomous Defenses in Amoebae

    No full text
    The human-pathogenic fungus Aspergillus fumigatus is a ubiquitous saprophyte that causes fatal lung infections in immunocompromised individuals. Following inhalation, conidia are ingested by innate immune cells and can arrest phagolysosome maturation. How this virulence trait could have been selected for in natural environments is unknown. Here, we found that surface exposure of the green pigment 1,8-dihydroxynaphthalene-(DHN)-melanin can protect conidia from phagocytic uptake and intracellular killing by the fungivorous amoeba Protostelium aurantium and delays its exocytosis from the nonfungivorous species Dictyostelium discoideum. To elucidate the antiphagocytic properties of the surface pigment, we followed the antagonistic interactions of A. fumigatus conidia with the amoebae in real time. For both amoebae, conidia covered with DHN-melanin were internalized at far lower rates than were seen with conidia lacking the pigment, despite high rates of initial attachment to nonkilling D. discoideum. When ingested by D. discoideum, the formation of nascent phagosomes was followed by transient acidification of phagolysosomes, their subsequent neutralization, and, finally, exocytosis of the conidia. While the cycle was completed in less than 1 h for unpigmented conidia, the process was significantly prolonged for conidia covered with DHN-melanin, leading to an extended intracellular residence time. At later stages of this cellular infection, pigmented conidia induced enhanced damage to phagolysosomes and infected amoebae failed to recruit the ESCRT (endosomal sorting complex required for transport) membrane repair machinery or the canonical autophagy pathway to defend against the pathogen, thus promoting prolonged intracellular persistence in the host cell and the establishment of a germination niche in this environmental phagocyte

    Conidial melanin of the human pathogenic fungus Aspergillus fumigatus disrupts cell autonomous defenses in amoebae

    No full text
    The human pathogenic fungus is a ubiquitous saprophyte that causes fatal infections in immunocompromised individuals. Following inhalation, conidia are ingested by innate immune cells and can arrest phagolysosome maturation. How such general virulence traits could have been selected for in natural environments is unknown. Here, we used the model amoeba to follow the antagonistic interaction of conidia with environmental phagocytes in real time. We found that conidia covered with the green pigment 1,8-dihydroxynaphthalene-(DHN)-melanin were internalized at far lower rates when compared to those lacking the pigment, despite high rates of initial attachment. Immediately after uptake of the fungal conidia, nascent phagosomes were formed through sequential membrane fusion and fission events. Using single-cell assays supported by a computational model integrating the differential dynamics of internalization and phagolysosome maturation, we could show that acidification of phagolysosomes was transient and was followed by neutralization and, finally, exocytosis of the conidium. For unpigmented conidia, the cycle was completed in less than 1 h, while the process was delayed for conidia covered with DHN-melanin. At later stages of infection, damage to infected phagocytes triggered the ESCRT membrane repair machinery, whose recruitment was also attenuated by DHN-melanin, favoring prolonged persistence and the establishment of an intracellular germination niche in this environmental phagocyte. Increased exposure of DHN-melanin on the conidial surface also improved fungal survival when confronted with the fungivorous predator , demonstrating its universal antiphagocytic properties

    The potential of amoeba-based processes for natural product syntheses

    No full text
    Kufs JE, Reimer C, Stallforth P, Hillmann F, Regestein L. The potential of amoeba-based processes for natural product syntheses. Current Opinion in Biotechnology. 2022;77: 102766.The identification of novel platform organisms for the production and discovery of small molecules is of high interest for the pharmaceutical industry. In particular, the structural complexity of most natural products with therapeutic potential restricts an industrial production since chemical syntheses often require complex multistep routes. The amoeba Dictyostelium discoideum can be easily cultivated in bioreactors due to its planktonic growth behavior and contains numerous polyketide and terpene synthase genes with only a few compounds being already elucidated. Hence, the amoeba both bears a wealth of hidden natural products and allows for the development of new bioprocesses for existing pharmaceuticals. In this mini review, we present D. discoideum as a novel platform for the production of complex secondary metabolites and discuss its suitability for industrial processes. We also provide initial insights into future bioprocesses, both involving bacterial coculture setups and for the production of plant-based pharmaceuticals
    corecore