115 research outputs found

    Sustaining the future through virtual worlds

    Get PDF
    Virtual worlds (VWs) continue to be used extensively in Australia and New Zealand higher education institutions although the tendency towards making unrealistic claims of efficacy and popularity appears to be over. Some educators at higher education institutions continue to use VWs in the same way as they have done in the past; others are exploring a range of different VWs or using them in new ways; whilst some are opting out altogether. This paper presents an overview of how 46 educators from some 26 institutions see VWs as an opportunity to sustain higher education. The positives and negatives of using VWs are discussed

    Editorial: Geoscience communication ā€“ planning to make it publishable

    Get PDF
    If you are a geoscientist doing work to achieve impact outside academia or engaging different audiences with the geosciences, are you planning to make this publishable? If so, then plan. Such investigations into how people (academics, practitioners, other publics) respond to geoscience can use pragmatic, simple research methodologies accessible to the non-specialist or be more complex. To employ a medical analogy, first aid is useful and the best option in some scenarios, but calling a medic (i.e. a collaborator with experience of geoscience communication or relevant research methods) provides the contextual knowledge to identify a condition and opens up a diverse, more powerful range of treatment options. Here, we expand upon the brief advice in the first editorial of Geoscience Communication (Illingworth et al., 2018), illustrating what constitutes robust and publishable work in this context, elucidating its key elements. Our aim is to help geoscience communicators plan a route to publication and to illustrate how good engagement work that is already being done might be developed into publishable research

    Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology

    Get PDF
    To limit warming to well below 2Ā°C, most scenario projections rely on greenhouse gas removal technologies (GGRTs); one such GGRT uses soil carbon sequestration (SCS) in agricultural land. In addition to their role in mitigating climate change, SCS practices play a role in delivering agroecosystem resilience, climate change adaptability, and food security. Environmental heterogeneity and differences in agricultural practices challenge the practical implementation of SCS, and our analysis addresses the associated knowledge gap. Previous assessments have focused on global potentials, but there is a need among policy makers to operationalise SCS. Here, we assess a range of practices already proposed to deliver SCS, and distil these into a subset of specific measures. We provide a multiā€disciplinary summary of the barriers and potential incentives toward practical implementation of these measures. First, we identify specific practices with potential for both a positive impact on SCS at farm level, and an uptake rate compatible with global impact. These focus on: a. optimising crop primary productivity (e.g. nutrient optimisation, pH management, irrigation) b. reducing soil disturbance and managing soil physical properties (e.g. improved rotations, minimum till) c. minimising deliberate removal of C or lateral transport via erosion processes (e.g. support measures, bare fallow reduction) d. addition of C produced outside the system (e.g. organic manure amendments, biochar addition) e. provision of additional C inputs within the cropping system (e.g. agroforestry, cover cropping) We then consider economic and nonā€cost barriers and incentives for land managers implementing these measures, along with the potential externalised impacts of implementation. This offers a framework and reference point for holistic assessment of the impacts of SCS. Finally, we summarise and discuss the ability of extant scientific approaches to quantify the technical potential and externalities of SCS measures, and the barriers and incentives to their implementation in global agricultural systems
    • ā€¦
    corecore