73 research outputs found

    Chaperones and chaperone-substrate complexes: dynamic playgrounds for NMR spectroscopists

    Get PDF
    The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution

    Solution NMR studies of membrane-protein-chaperone complexes

    Get PDF
    The biosynthesis of the bacterial outer membrane depends on molecular chaperones that protect hydrophobic membrane proteins against aggregation while transporting them across the periplasm. In our ongoing research, we use high-resolution NMR spectroscopy in aqueous solution as the main technique to characterize the structures and biological functions of these membrane-protein-chaperone complexes. Here, we describe NMR studies addressing three functional aspects of periplasmic membrane-protein-chaperone complexes. Firstly, the Escherichia coli outer membrane protein OmpX binds to each of the two chaperones, Skp and SurA, in structurally at least partially similar states despite fundamental differences between the three-dimensional structures of the chaperones. Secondly, we show that the Skp-bound state of OmpX is equivalent to a chemically denatured state in terms of its refolding competence into detergent micelles in vitro. Thirdly, we use amino acid mutation analysis to show that the interaction of OmpX to Skp is not dominated by the two most hydrophobic segments of OmpX

    The role of RNase H2 in genome maintenance and autoimmune disease

    Get PDF
    Aicardi-Goutières syndrome (AGS) is an autosomal recessive encephalopathy with low incidence. The disease is caused by mutations in the genes encoding for TREX1, SAMHD1, ADAR, IFIH1 and the three genes encoding for the heterotrimeric RNase H2 enzyme. Biallelic mutations in any of the genes cause elevated type I interferon levels in the cerebrospinal fluid (CSF), the hallmark of AGS. In AGS patients, increased type I interferon levels cause massive inflammation in the brain that leads to mental and physical retardation that likely cause death in early childhood. AGS shows significant overlap with the prototypic autoimmune disease systemic lupus erythematosus (SLE). Like AGS patients, SLE patients are also characterized by increased type I interferon levels, anti-nuclear autoantibodies (ANAs) and arthritis. Moreover, heterozygous mutations in TREX1, SAMHD1 and RNase H2 are also found in a small fraction of SLE patients. Due to the genetic, molecular and clinical overlap, AGS is regarded as a monogenic variant of SLE. This overlap allows for the investigation of SLE pathomechanisms using genetically engineered mouse models with AGS-related mutations. In order to generate a mouse model that allows for the identification of pathomechanisms in AGS patients with mutations in the genes encoding for the RNase H2 enzyme, we generated mice with deficiency for the RNase H2 enzyme. Mice with complete deficiency for the RNase H2 enzyme (Rnaseh2c-/- or Rnaseh2bKOF/KOF) died perinatally or were stillborn. Mouse embryonic fibroblasts (MEFs) from E14.5 Rnaseh2bKOF/KOF embryos displayed impaired proliferation that was caused by the accumulation of MEF cells in G2/M of the cell cycle which increased with cultivation time or if MEF cells were isolated from E18.5 Rnaseh2bKOF/KOF embryos. Gene expression analysis of E14.5 fetal liver cells revealed a robust p53-mediated DNA damage response with the cell cycle inhibitor cyclin- dependent kinase inhibitor 1a (Cdkn1a, p21) being the most up-regulated gene. We found increased numbers of phosphorylated histone H2AX (γH2AX) in fetal liver and thymus cells from E18.5 Rnaseh2bKOF/KOF embryos, indicative of DNA double-strand breaks. Finally, we could show increased ribonucleotide loads in genomic DNA from embryos that were completely deficient for the RNase H2 enzyme. Collectively, we have demonstrated that complete RNase H2 deficiency causes persistent genomic ribonucleotide loads that render the DNA instable and prone to DNA strand breaks. DNA damage leads to the activation of p53 that in turn activates the cell cycle inhibitor p21 that inhibits cell cycle progression and likely causes accumulation of RNase H2-deficient cells in G2/M. To bypass early lethality we also generated bone marrow chimera and cell type-specific knockouts of the Rnaseh2b gene. While fetal liver cells of E14.5 Rnaseh2bKOF/KOF embryos could maintain hematopoiesis of irradiated recipient mice for almost one year, bone marrow cells from these primary recipients failed to reconstitute lethally irradiated mice in a secondary transfer. In line with this observation, VavCre-mediated deletion of the Rnaseh2b gene caused a more than hundred fold reduction of peripheral blood B cells, while B cell numbers remained unaltered upon CD19Cre-mediated deletion that occurs much later in B cell development. These data suggested that RNase H2 deficiency leads to the accumulation of genomic ribonucleotides that might cause the accumulation of a so far uncharacterized DNA damage species with increasing cell cycle passages. The data further supported our hypothesis that the impact of RNase H2 deficiency is determined by the number of cell proliferation. Finally, an epidermis-specific knockout of the Rnaseh2b gene displayed the most dramatic phenotype. Knockout mice were characterized by hyperpigmentation, hair loss and spontaneous ulcerations of the skin. Microscopically, these mice displayed moderate thickening of the epidermis and dermal fibrosis as indicated by increased collagen deposition. Macroscopic skin phenotypes were completely dependent on p53 expression, since concomitant deletion of the p53 gene rescued mice from hyperpigmentation, hair loss and ulcerations. This data demonstrated that Rnaseh2b deficiency in the epidermis may also lead to DNA damage and subsequent p53 activation as shown for fetal liver from E14.5 RNase H2-deficient embryos. Preliminary data also indicate an increased incidence of cancer formation in RNase H2/p53 double knockouts, identifying the RNase H2 enzyme as an important tumor suppressor

    The dynamic dimer structure of the chaperone Trigger Factor

    Get PDF
    The chaperone Trigger Factor (TF) from Escherichia coli forms a dimer at cellular concentrations. While the monomer structure of TF is well known, the spatial arrangement of this dimeric chaperone storage form has remained unclear. Here, we determine its structure by a combination of high-resolution NMR spectroscopy and biophysical methods. TF forms a symmetric head-to-tail dimer, where the ribosome binding domain is in contact with the substrate binding domain, while the peptidyl-prolyl isomerase domain contributes only slightly to the dimer affinity. The dimer structure is highly dynamic, with the two ribosome binding domains populating a conformational ensemble in the center. These dynamics result from intermolecular in trans interactions of the TF client-binding site with the ribosome binding domain, which is conformationally frustrated in the absence of the ribosome. The avidity in the dimer structure explains how the dimeric state of TF can be monomerized also by weakly interacting clients

    Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification

    Get PDF
    Filamentation induced by cyclic AMP (FIC)-domain enzymes catalyze adenylylation or other posttranslational modifications of target proteins to control their function. Recently, we have shown that Fic enzymes are autoinhibited by an α-helix (αinh) that partly obstructs the active site. For the single-domain class III Fic proteins, the αinh is located at the C terminus and its deletion relieves autoinhibition. However, it has remained unclear how activation occurs naturally. Here, we show by structural, biophysical, and enzymatic analyses combined with in vivo data that the class III Fic protein NmFic from Neisseria meningitidis gets autoadenylylated in cis, thereby autonomously relieving autoinhibition and thus allowing subsequent adenylylation of its target, the DNA gyrase subunit GyrB. Furthermore, we show that NmFic activation is antagonized by tetramerization. The combination of autoadenylylation and tetramerization results in nonmonotonic concentration dependence of NmFic activity and a pronounced lag phase in the progress of target adenylylation. Bioinformatic analyses indicate that this elaborate dual-control mechanism is conserved throughout class III Fic proteins

    Regulation of chaperone function by coupled folding and oligomerization

    Get PDF
    The homotrimeric molecular chaperone Skp of Gram-negative bacteria facilitates the transport of outer membrane proteins across the periplasm. It has been unclear how its activity is modulated during its functional cycle. Here, we report an atomic-resolution characterization of the; Escherichia coli; Skp monomer-trimer transition. We find that the monomeric state of Skp is intrinsically disordered and that formation of the oligomerization interface initiates folding of the α-helical coiled-coil arms via a unique "stapling" mechanism, resulting in the formation of active trimeric Skp. Native client proteins contact all three Skp subunits simultaneously, and accordingly, their binding shifts the Skp population toward the active trimer. This activation mechanism is shown to be essential for; Salmonella; fitness in a mouse infection model. The coupled mechanism is a unique example of how an ATP-independent chaperone can modulate its activity as a function of the presence of client proteins

    SIRPα-αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells

    Get PDF
    BACKGROUND Acute myeloid leukaemia (AML) stem cells (LSCs) cause disease relapse. The CD47 \textquotedbldon't eat me signal\textquotedbl is upregulated on LSCs and contributes to immune evasion by inhibiting phagocytosis through interacting with myeloid-specific signal regulatory protein alpha (SIRPα). Activation of macrophages by blocking CD47 has been successful, but the ubiquitous expression of CD47 on healthy cells poses potential limitations for such therapies. In contrast, CD123 is a well-known LSC-specific surface marker utilized as a therapeutic target. Here, we report the development of SIRPα-αCD123 fusion antibodies that localize the disruption of CD47/SIRPα signalling to AML while specifically enhancing LSC clearance. METHODS SIRPα-αCD123 antibodies were generated by fusing the extracellular domain of SIRPα to an αCD123 antibody. The binding properties of the antibodies were analysed by flow cytometry and surface plasmon resonance. The functional characteristics of the fusion antibodies were determined by antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity assays using primary AML patient cells. Finally, an in vivo engraftment assay was utilized to assess LSC targeting. RESULTS SIRPα-αCD123 fusion antibodies exhibited increased binding and preferential targeting of CD123+ CD47+ AML cells even in the presence of CD47+ healthy cells. Furthermore, SIRPα-αCD123 fusion antibodies confined disruption of the CD47-SIRPα axis locally to AML cells. In vitro experiments demonstrated that SIRPα-αCD123 antibodies greatly enhanced AML cell phagocytosis mediated by allogeneic and autologous macrophages. Moreover, SIRPα-αCD123 fusion antibodies efficiently targeted LSCs with in vivo engraftment potential. CONCLUSIONS SIRPα-αCD123 antibodies combine local CD47 blockade with specific LSC targeting in a single molecule, minimize the risk of targeting healthy cells and efficiently eliminate AML LSCs. These results validate SIRPα-αCD123 antibodies as promising therapeutic interventions for AML

    The role of RNase H2 in genome maintenance and autoimmune disease

    Get PDF
    Aicardi-Goutières syndrome (AGS) is an autosomal recessive encephalopathy with low incidence. The disease is caused by mutations in the genes encoding for TREX1, SAMHD1, ADAR, IFIH1 and the three genes encoding for the heterotrimeric RNase H2 enzyme. Biallelic mutations in any of the genes cause elevated type I interferon levels in the cerebrospinal fluid (CSF), the hallmark of AGS. In AGS patients, increased type I interferon levels cause massive inflammation in the brain that leads to mental and physical retardation that likely cause death in early childhood. AGS shows significant overlap with the prototypic autoimmune disease systemic lupus erythematosus (SLE). Like AGS patients, SLE patients are also characterized by increased type I interferon levels, anti-nuclear autoantibodies (ANAs) and arthritis. Moreover, heterozygous mutations in TREX1, SAMHD1 and RNase H2 are also found in a small fraction of SLE patients. Due to the genetic, molecular and clinical overlap, AGS is regarded as a monogenic variant of SLE. This overlap allows for the investigation of SLE pathomechanisms using genetically engineered mouse models with AGS-related mutations. In order to generate a mouse model that allows for the identification of pathomechanisms in AGS patients with mutations in the genes encoding for the RNase H2 enzyme, we generated mice with deficiency for the RNase H2 enzyme. Mice with complete deficiency for the RNase H2 enzyme (Rnaseh2c-/- or Rnaseh2bKOF/KOF) died perinatally or were stillborn. Mouse embryonic fibroblasts (MEFs) from E14.5 Rnaseh2bKOF/KOF embryos displayed impaired proliferation that was caused by the accumulation of MEF cells in G2/M of the cell cycle which increased with cultivation time or if MEF cells were isolated from E18.5 Rnaseh2bKOF/KOF embryos. Gene expression analysis of E14.5 fetal liver cells revealed a robust p53-mediated DNA damage response with the cell cycle inhibitor cyclin- dependent kinase inhibitor 1a (Cdkn1a, p21) being the most up-regulated gene. We found increased numbers of phosphorylated histone H2AX (γH2AX) in fetal liver and thymus cells from E18.5 Rnaseh2bKOF/KOF embryos, indicative of DNA double-strand breaks. Finally, we could show increased ribonucleotide loads in genomic DNA from embryos that were completely deficient for the RNase H2 enzyme. Collectively, we have demonstrated that complete RNase H2 deficiency causes persistent genomic ribonucleotide loads that render the DNA instable and prone to DNA strand breaks. DNA damage leads to the activation of p53 that in turn activates the cell cycle inhibitor p21 that inhibits cell cycle progression and likely causes accumulation of RNase H2-deficient cells in G2/M. To bypass early lethality we also generated bone marrow chimera and cell type-specific knockouts of the Rnaseh2b gene. While fetal liver cells of E14.5 Rnaseh2bKOF/KOF embryos could maintain hematopoiesis of irradiated recipient mice for almost one year, bone marrow cells from these primary recipients failed to reconstitute lethally irradiated mice in a secondary transfer. In line with this observation, VavCre-mediated deletion of the Rnaseh2b gene caused a more than hundred fold reduction of peripheral blood B cells, while B cell numbers remained unaltered upon CD19Cre-mediated deletion that occurs much later in B cell development. These data suggested that RNase H2 deficiency leads to the accumulation of genomic ribonucleotides that might cause the accumulation of a so far uncharacterized DNA damage species with increasing cell cycle passages. The data further supported our hypothesis that the impact of RNase H2 deficiency is determined by the number of cell proliferation. Finally, an epidermis-specific knockout of the Rnaseh2b gene displayed the most dramatic phenotype. Knockout mice were characterized by hyperpigmentation, hair loss and spontaneous ulcerations of the skin. Microscopically, these mice displayed moderate thickening of the epidermis and dermal fibrosis as indicated by increased collagen deposition. Macroscopic skin phenotypes were completely dependent on p53 expression, since concomitant deletion of the p53 gene rescued mice from hyperpigmentation, hair loss and ulcerations. This data demonstrated that Rnaseh2b deficiency in the epidermis may also lead to DNA damage and subsequent p53 activation as shown for fetal liver from E14.5 RNase H2-deficient embryos. Preliminary data also indicate an increased incidence of cancer formation in RNase H2/p53 double knockouts, identifying the RNase H2 enzyme as an important tumor suppressor
    • …
    corecore