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Abstract 

 

Due to imperfect discrimination against ribonucleoside triphosphates by the replicative DNA 

polymerases, large numbers of ribonucleotides are incorporated into the eukaryotic nuclear 

genome during S-phase. Ribonucleotides, by far the most common DNA lesion in replicating 

cells, destabilize the DNA, and an evolutionarily conserved DNA repair machinery, 

ribonucleotide excision repair (RER), ensures ribonucleotide removal. Whereas complete 

lack of RER is embryonically lethal, partial loss-of-function mutations in the genes encoding 

subunits of RNase H2, the enzyme essential for initiation of RER, cause the SLE-related type 

I interferonopathy Aicardi-Goutières syndrome. Here we demonstrate that selective 

inactivation of RER in mouse epidermis results in spontaneous DNA damage and epidermal 

hyperproliferation associated with loss of hair follicle stem cells and hair follicle function. The 

animals developed keratinocyte intraepithelial neoplasia and invasive squamous cell 

carcinoma with complete penetrance, despite potent type I interferon production and skin 

inflammation. These results suggest that compromises to RER-mediated genome 

maintenance might represent an important tumor-promoting principle in human cancer.  

 

 

 

Statement of Significance 

 

Selective inactivation of ribonucleotide excision repair by loss of RNase H2 in the murine 

epidermis results in spontaneous DNA damage, type I interferon response, skin inflammation, 

and development of squamous cell carcinoma. 
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Introduction 

Genome integrity is continuously challenged by a multitude of different hazards that cause a 

broad spectrum of different lesions in DNA [1]. Spontaneous hydrolysis, ionizing radiation, 

exogenous chemicals and endogenous metabolites, including reactive oxygen species, inflict 

cumulative damage to DNA [1]. Fortunately, various DNA repair pathways revert most of this 

damage, thereby dramatically slowing down age-related deterioration of DNA integrity and 

suppressing the development of cancer [2]. In addition to continuous, time-dependent harm 

to DNA, other forms of damage are introduced already during replication by errors the 

replicative polymerases make, despite their remarkable fidelity. Such replication errors 

include incorporation of deoxyribonucleotides that are not complementary to the template, 

which occurs every 104-106 bases, depending on the DNA polymerase. Most mismatched 

nucleotides are removed by the proofreading activity that some DNA polymerases possess, 

while the remaining mismatches are detected and corrected by DNA mismatch repair (MMR), 

which is directly coupled to the replication machinery [3-5]. Postreplicative mismatch repair is 

an important tumor-suppressive principle as genetic defects in MMR proteins cause cancer 

predisposition syndromes, including Lynch syndrome [6] and biallelic mismatch repair 

deficiency (BMMRD) syndrome [7]. 

Another form of replication error is the incorporation of nucleotides containing the correct 

base, but the wrong sugar. For example, discrimination between incoming 

deoxyribonucleotides (dNTPs) and ribonucleotides (rNTPs) is imperfect for the three DNA 

polymerases that replicate the vast majority of the undamaged eukaryotic nuclear genome 

[8], resulting in frequent incorporation of rNMPs into genomic DNA [9, 10]. The probability for 

this mistake is increased by the far greater cellular abundance of rNTPs compared to dNTPs 

[8, 11] such that on average, more than 106 rNMPs are incorporated during one round of 

replication of a mammalian genome [12]. Newly incorporated rNMPs destabilize DNA [10] 

and pose a major threat to genome integrity due to their reactive 2’OH group. A highly 

conserved repair pathway, ribonucleotide excision repair (RER), ensures their removal [10, 

13, 14]. Like MMR, RER may be directly coupled to replication and results in rapid 

postreplicative repair of rNMPs. The first step in RER is detection of rNMPs embedded in the 

DNA double helix by ribonuclease H2 (RNase H2). RNase H2 then incises the rNMP-

containing strand immediately 5’ of the rNMP. In vitro, this is followed by strand displacement 

synthesis by pol or pol, flap cleavage by Fen1 or Exo1 and ligation of the nick[14]. 

Interestingly, during their brief transient presence in DNA, rNMPs seem to serve important 

physiological functions in DNA metabolism [8, 13, 15]. They may provide a strand 

discrimination signal in MMR for the nascent leading strand [16, 17], wherein RNase H2-

mediated incisions, occurring only in the newly synthesized rNMP-containing strand may 

serve as entry points for MMR enzymes. Moreover, nicking by RNase H2 could be crucial for 
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relaxing leading strand torsional stress [18]. rNMPs might also be incorporated during repair 

synthesis occurring in non-cycling cells that contain very high rNTP:dNTP ratios.   

RNase H2-deficient cells are incapable of executing normal RER, carry high numbers of 

rNMPs in their DNA and spontaneously mount a DNA damage response (DDR), reflecting 

the DNA-destabilizing effects of rNMPs (reviewed in [13, 15, 19]). rNMPs alter DNA structure 

and thereby potentially affect multiple key DNA transactions. rNMPs increase the rate of 

spontaneous hydrolysis and were shown to trigger a mutagenic repair pathway in yeast 

depending on DNA topoisomerase 1, which, like RNase H2, can incise at single rNMPs, 

potentially generating unligatable ends in repetitive DNA that result in short deletion 

mutations [20]. Topoisomerase 1 cleavage at ribonucleotides embedded in the DNA can also 

result in double strand breaks and replication stress ensuing from abnormally long-lived 

topoisomerase 1-DNA complexes [21]. Moreover, bypassing rNMPs in DNA may pose a 

problem for replicative polymerases, that may result in replication fork stalling, strand breaks 

and replicative stress. In addition to genome protection by RNase H2-mediated removal of 

single rNMPs, RNase H2 contributes to genome stability also by resolution of R-loops [22], 

preventing damage resulting from collisions of RNA polymerases or replication forks with R-

loops. 

Loss of RNase H2 causes genome instability in yeast with high rates of gross chromosomal 

rearrangements and copy number variations (reviewed in [13]). Mammalian cells lacking the 

enzyme display increased numbers of strand breaks, activation of DNA damage responses 

(DDRs), and chromosomal aberrations [12, 23]. Abnormal mitotic chromosome segregation 

associated with this damage was shown to occur in RNase H2-deficient cells, leading to 

formation of micronuclei [24, 25]. Similarly, DNA damage can lead to herniation of chromatin 

into the cytosol [26]. Micronuclei and herniated chromatin expose large amounts of 

chromosomal DNA to the cytosolic DNA sensor cGAS that activates STING and thereby 

triggers an inflammatory response, including upregulation of interferon-stimulated genes 

(ISGs) and inflammatory cytokine production [24]. Unbalanced type I IFN responses are 

likely responsible for chronic inflammation in patients suffering from the rare monogenic 

autoimmune disorder Aicardi-Goutières syndrome (AGS), which can be caused by partial 

loss of function of RNase H2 or by mutations in other enzymes involved in nucleic acid 

metabolism [27, 28]. 

In mouse models, the effects of targeted inactivation of RNase H2 in vivo were found to 

critically depend on the degree to which RNase H2 activity was reduced. The RNase H2 

complex is composed of three proteins, RNASEH2A, B and C all of which are essential for 

RNase H2 activity [29, 30]. Biallelic null or hypomorphic mutations in RNase H2 genes that 

cause massive reduction of activity resulted in embryonic or perinatal lethality associated 

with spontaneous DNA damage and activation of DDRs [12, 23, 31]. In contrast, a 



5 
 

homozygous mutation reducing RNase H2 activity to about 30% of wildtype levels triggered a 

spontaneous low level IFN response, but was not associated with gross pathology [32]. 

To elucidate consequences of severe RER deficiency for the homeostasis of a tissue with 

rapid cell turnover in adult animals, we bypassed embryonic lethality of ubiquitous RNase H2 

deficiency by conditional gene inactivation. We demonstrate that complete loss of RNase H2 

in skin epithelium results in spontaneous DNA damage and epidermal hyperproliferation that 

progresses to skin cancer with 100% penetrance, despite potent spontaneous type I IFN 

responses, demonstrating that RNase H2-dependent RER is an important tumor-suppressive 

principle.  

 

Material and Methods 

Mice. Rnaseh2bFL/FL [23], K14-Cre [33], Ifnar1-/- (generated from Ifnar1FL mice [34] by 

ubiquitous deletion of the loxP-flanked fragment), Trp53-/- [34] were either on the C57BL/6NJ 

background or backcrossed for at least five generations to C57BL/6NJ. Mice were housed at 

the Experimental Center, Medical Faculty Carl Gustav Carus, TU Dresden, under specific 

pathogen-free conditions. All procedures were in accordance with institutional guidelines on 

animal welfare and were approved by the Landesdirektion Dresden (permit number 24-

1/2013-12).  

Quantification of mRNAs by quantitative RT-PCR. Total RNA was isolated using the 

NucleoSpin kit (Macherey-Nagel) according to the manufacturer’s instructions. cDNA was 

generated using the RevertAid H Minus First Strand cDNA Synthesis kit (Thermo Fisher 

Scientific). Quantification of transcripts was performed on a Mx3005P QPCR system (Agilent 

Technologies) using the Maxima SYBR green/ROX qPCR Master Mix (Thermo Fisher 

Scientific). The following oligos were used: Oasl1 up, 5’-GCAATCCACAGCGATATCC-3’; 

Oasl1 down, 5’-CAACTGCTCACTGTCCACGG-3’; Ifi44 up, 5’-

GAGTCACTCATTCTCGGACTCCGC-3’; Ifi44 down, 5’-GAGCGGGCATTGAAGTAAGGGC-

3’; Viperin up, 5’-TTCGCCCGCATCAAAGCCGT-3’; Viperin down, 5’-AGGGGGCAGCGG- 

AAGTCGAT-3’; Rnaseh2b up, 5’-AGGTTTCCAGGGACAAGGAAGAGGA-3’; Rnaseh2b 

down, 5’-GTCAATGAAGCTGGAGGTTCTGGAAG-3’; Tbp1 up, 5’-

TGACCCAGATCATGTTTGAGACCTTCA-3’; and Tbp1 down, 5’-

GGAGTCCATCACAATGCCTGTGG-3’. All samples were run in triplicates. qRT-PCR data 

are displayed as fold change compared to means of the respective control groups ± SD. 

Assay for RNase H2 activity. Cell lysates were prepared and assayed for specific cleavage 

of an 18-bp double-stranded DNA substrate containing a single ribonucleotide in one strand 

as previously described [27, 29]. RNase H2–specific activity was determined by subtracting 

the cellular activity against a sequence-matched DNA duplex without ribonucleotides. Cell 

lysate protein concentration was determined and lysates were added to the reaction mix at a 
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final protein concentration of 100 ng/μl.  

Isolation and flow cytometric analysis of epidermal cells. Back skin was excised and 

adipose tissue was removed. The skin was placed on a layer of trypsin solution (0.25%, Life 

Technologies Germany) with the epidermal side facing upwards. After incubation for 2 hours, 

the epidermis was separated from the dermis using blunt forceps. The epidermis was minced 

with scalpels and digested in 10 ml trypsin solution (0.25%, Life Technologies) for another 

hour. The digest was stopped by adding an equal volume of medium (DMEM (2/3) + HAM`s 

F12 (1/3)) supplemented with 10% calcium free FBS and the cells were strained through a 

40 μm nylon mesh. Cells were then centrifuged for 8 min at 500 g at RT and the pellet was 

resuspended in 2 ml FACS buffer. Epidermal stem cell populations were stained according to 

Jensen et al. [35]. For flow cytometry, cells were stained using the following antibodies: anti-

CD45-FITC (1:400, eBioscience), anti-CD49f-PE (1:200, eBioscience), anti-CD34-eF660 

(1:50, eBioscience), anti-Sca1-PerCP-Cy5.5 (1:200, eBioscience), anti-CD117-APC-Cy7 

(1:800, Biolegend). Cell sorting and analysis was performed on an ARIA III cell sorter (BD) 

and data were recorded using DIVA software (BD) and analyzed using FlowJo (FlowJo, LLC).  

Transcriptome analysis. Keratinocytes (CD49f+) and hematopoietic cells (CD45+) were 

isolated from skin cell suspensions by FACS (see above). Total RNA was isolated using the 

RNeasy Mini Kit+ (Qiagen). mRNA libraries were prepared and subjected to deep 

sequencing on an Illumina®HighSeq. Reads were mapped to the reference genome mm10 

(Ensembl Version 75) using gsnap (v.2014-12-06 for analysis of CD45-CD49f+ cells, v.2014-

12-17 for analysis of CD45+ cells) and genes were counted with featurecount v.1.4.6.. 

Differentially expressed genes (DEGs) were identified using DESeq2 v1.8.1 [36]. Custering 

of DEGs into specific pathways was investigated using KEGG (http://www.ge-

nome.jp/kegg/pathway.html), Reactome (https://reactome.org/) and Interferome V2.0 

(www.interferome.org/) databases as well as the Ingenuity Pathway Analysis (IPA) software 

(Qiagen). RNA-seq data reported in this paper are accessible as a super series from the 

Gene Expression Omnibus database (GEO) under accession number GSE115005.  

Histology. Formalin-fixed and paraffin-embedded skin sections were de-paraffinized and 

rehydrated, subjected to antigen retrieval (20 min 98°C in sodium citrate pH 6.0) and washed 

three times in TBST (1xTBS, 0.1% Triton X-100).  

For quantification of phosphorylated histone H2A.X (H2A.X), sections were blocked for 1h 

(10% goat serum in TBST) and incubated at 4°C over night with a phospho-histone H2A.X 

(pSer139) antibody (Cell Signaling, 1:50 in 1% goat serum/tris-buffered saline with 0.05% 

Tween20 (TBST)). Next, sections were washed (TBST) and incubated with a goat anti-rabbit-

AF488 antibody (1:500, Thermo Fisher Scientific) for 4h at room temperature in the dark. 

After washing, nuclei were counterstained with DAPI in the mounting solution. Images were 

recorded on a Zeiss Axiovert ApoTome II and analyzed using Zen® software (Zeiss). H2A.X 
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foci in at least 220 keratinocyte nuclei of the interfollicular epidermis per section were 

counted.  

For quantification of Ki67-positive cells, endogenous peroxidase activity was blocked (3% 

H2O2, 20 min in the dark), unspecific epitopes were blocked (PBS 10% BSA, 0.5% Triton X-

100 for 1h at room temperature) and sections were washed and incubated at 4°C over night 

with anti-Ki67-Biotin (eBioscience, 1:100 in PBS 1% BSA, 0.05% Triton X-100). After 

washing, sections were incubated for 1h at RT with HRP-conjugated Streptavidin (Dako, 

1:300, PBS, 1% BSA, 0.05% Triton X-100). After addition of DAB mix (Vector Labs) and 

counter-staining with hematoxylin, Ki67-positive keratinocytes were counted in interfollicular 

epidermis. 

For quantification of dying cells positive for activated caspase 3, antigen retrieval was 

performed in PBS with 1 mM EDTA, 0.05% Tween 20, pH 8.0 for 20 min in a pressure 

cooker), sections were blocked (PBS, 0.1% Tween 20, 5% normal goat serum) and 

incubated with rabbit anti-active-Caspase3 AF835 (R&D, 1:600) at 4°C over night, followed 

by washing and incubation for 1h at RT with goat anti-rabbit AF488 (ab150077, Abcam, 

1:500). Nuclei were stained with DAPI. Images were recorded on a Keyence BZ-X710 

microscope and positive cells were counted in interfollicular epidermis and follicular 

infundibula.  

Histological evaluation was performed by a professional dermato-histopathologist (J. Wenzel, 

Bonn, Germany) in a blinded fashion. 

Statistical analysis. Unless stated otherwise, significance was calculated by unpaired, two-

sided Student's t-test, *** P<0.001, **P<0.01, *P<0.05. 

 

Results 

1. Complete loss of RNase H2 in the epidermis results in epithelial hyperproliferation 

and loss of stem cells 

We inactivated the Rnaseh2b gene selectively in the epidermis by crossing Rnaseh2bFLOX 

mice[23] to the K14-Cre line that deletes loxP-flanked DNA in all basal cells of skin 

epithelium including hair follicles [23, 33]. Rnaseh2bFL/FLK14-Cre mice (‘Rnaseh2EKO‘ mice) 

showed strong reduction of Rnaseh2b transcripts and RNase H2 activity in total epidermis or 

FACS-purified epidermal cells, as expected (Fig. S1a, b, c). The animals were conspicuous 

already few days after birth, showing significant hyperpigmentation, most prominently of ears, 

snout, tails and paws (Fig.1a), a known sign of ongoing DNA damage responses in mouse 

epidermis[37, 38]. While whiskers were hypomorphic and reduced in number already in 

young mice (Fig.1a), the fur initially appeared macroscopically normal. However, Rnaseh2EKO 

mice began to loose hair at about 12 weeks and were almost completely nude by 20 weeks 

(Fig.1a).  
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Histologically, Rnaseh2EKO epidermis was normal at the age of 5 weeks except for discrete 

hyperkeratosis (thickening of the cornified layer). In older animals (10-13 weeks and 18-21 

weeks), focal thickening of the epithelium and moderate hyperkeratosis suggested increased 

epithelial proliferation (Fig.1b). Immunostaining for the cell cycle marker Ki67 (Fig.1b) 

revealed increased numbers of proliferating epithelial cells in Rnaseh2EKO compared to 

control skin in all age groups tested. More rapid proliferation was paralleled by a strong 

increase in the frequency of apoptotic keratinocytes as detected by staining for active 

caspase 3 (Fig.1c, d). Loss of hair follicles did not account for the almost complete boldness 

of Rnaseh2EKO mice as substantial numbers of follicles were still present even at 30 weeks of 

age (Fig.S1d). In their active (anagen) phase, hair follicles grow to extend well into the 

dermal adipose tissue paralleled by thickening of the adipose tissue, whereas resting 

(telogen) follicles are usually confined to the dermal collagen layer. Numbers of anagen 

follicles were not different from control numbers at 5 weeks of age. At 10-13 weeks, we found 

no follicles extending into the adipose layer in control skin, indicating a synchronous resting 

phase of the hair cycle in this part of the body. In contrast, all Rnaseh2EKO mice featured 

numerous ‘active’ follicles at this time point, demonstrating disturbed hair cycle regulation 

(Fig.1e). This was also reflected by increased thickness of Rnaseh2EKO skin at 10-13 weeks 

as determined by skin fold measurements (Fig.S1e). Loss of hair follicle function in older 

Rnaseh2EKO mice suggested exhaustion of epithelial regenerative capacity. In accordance 

with this notion, we found that the number of hair follicle stem cells, in particular bulge stem 

cells (CD49f+CD34+Sca1lo) was strongly reduced in older mutants compared to controls, as 

determined by flow cytometric analysis of epidermal single cell suspensions (Fig.1f and S1f). 

In contrast, other undifferentiated epidermal cell populations were not reduced in mutant skin 

(Fig.1f and S1f). 

Collectively, loss of RNase H2 in the epidermis results in more rapid epithelial cell turnover 

due to enhanced epithelial cell proliferation and apoptosis, associated with reduction of hair 

follicle stem cell numbers and loss of hair follicle function. 

 

2. Spontaneous type I IFN response and inflammation in Rnaseh2EKO skin 

Histology and flow cytometry revealed enhanced leukocyte infiltration of Rnaseh2EKO skin 

(Fig.2a,b), which was accentuated around hair follicles (Fig.2a). Inflammatory cell invasion 

into the epithelium was associated with degeneration of the outer-most epithelial cells of the 

hairfollicle (Fig.2a), an inflammation pattern (‘interface dermatitis’) typical of skin lesions in 

SLE [39]. 

Since RNase H2-deficiency was shown to be associated with spontaneous activation of type 

I IFN responses [31, 32], we quantified transcript levels of type I IFN-inducible genes (ISGs) 

in Rnaseh2EKO and control skin by qRT-PCR analysis. ISG mRNAs were strongly increased 
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in total epidermis and in purified keratinocytes from young and older mutant mice (Fig.2c, 

Fig.S2a). Comparison of transcriptomes of leukocytes from control versus Rnaseh2EKO skin 

showed upregulation of multiple ISGs in the cells from the mutants, indicating exposure to 

type I IFN (Fig.2d, Table S1). 

Type I IFNs were shown to regulate stem cell function in the hematopoietic system [40]. We 

therefore addressed what role the chronic IFN response in Rnaseh2EKO epidermis played and 

crossed Rnaseh2EKO mice to a type I IFN receptor knock out (Ifnar1-/-) line [41] (Fig.S2b). 

Hyperpigmentation, hair loss (Fig.2e), hyperkeratosis and focal epidermal thickening 

(Fig.S2c), and inflammatory leukocyte infiltration (Fig.2f) of Rnaseh2EKO skin were not 

mitigated by additional inactivation of type I IFN signaling. Rnaseh2EKOIfnar1-/- mice showed a 

reduction of hair follicle stem cell numbers compared to controls (Fig.2g), similar to IFNAR-

competent Rnaseh2EKO mice (Fig.1e).  

Collectively, the skin inflammation of Rnaseh2EKO mice is associated with type I IFN 

production, however, leukocyte infiltration, epidermal hyperproliferation and loss of hair 

follicle function occur independent of type I IFN. 

 

3. Loss of RNase H2 in the epidermis results in spontaneous DNA damage and skin 

cancer 

Spontaneous DNA damage and activation of DNA damage responses was shown in RNase 

H2-deficient embryos and cells [12, 23]. Moreover, the hyperpigmented skin of Rnaseh2EKO 

mice is suggestive of chronic DNA damage responses in the epidermis [37, 38]. 

Immunostaining of skin sections for H2AX and 53BP1 repair foci indeed revealed increased 

numbers of H2AX and 53BP1 foci in Rnaseh2EKO compared to control epidermal cells 

(Fig.3a, Fig.S3a), consistent with increased frequencies of double-strand breaks in RNase 

H2-deficient yeast [21]. In line with this finding, transcriptome analysis of flow cytometrically 

purified Rnaseh2EKO keratinocytes showed up-regulation of several p53-inducible genes 

compared to control cells (Fig.3b, Table S2), indicating ongoing DNA damage responses. 

Starting from week 12, Rnaseh2EKO mice develop chronic ulcerations of the skin, most 

frequently in the dorsal neck area, affecting most animals by the age of 1 year (Fig.3c). All 

Rnaseh2EKO mice had to be sacrificed between 23 and 55 weeks of age due to these 

ulcerations, and/or because of large tumors in various locations, often in the mandibular 

region close to the ear (Fig.3c). Histology revealed (Fig.3d, Table S3) that all ulcerations 

occurred in neoplastic skin that was classified keratinocyte intraepithelial neoplasia (KIN) [42], 

i.e. malignant epidermal growth that has not yet breached the epithelial basement membrane, 

also called ‘carcinoma in situ’. In three of these cases, the tumor had focally broken through 

the basement membrane and was thus classified invasive squamous cell carcinoma (SSC). 

All macroscopic tumors histologically proved to be invasive SSC, except for two, which were 
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KIN producing large masses of cornified material (Fig.3d, Table S3). Figure 3e shows that 

100% of Rnaseh2EKO mice developed cancer of at least the KIN stage by about 50 weeks of 

age. By this time, 60% of the animals had already progressed to invasive SSC (Fig.3e). 

Additional inactivation of type I IFN signaling resulted in a slight (albeit insignificant) 

acceleration of neoplastic skin ulceration (Fig.S3b), most likely reflecting loss of stimulation 

of anti-tumor immunity by type I IFN. 

Collectively, we show that RNase H2-deficient hyperproliferative epidermis features 

spontaneous DNA damage as demonstrated by increased numbers of repair foci and 

increased transcript levels of p53-inducible genes, and progresses to cancer in 100% of the 

animals within the first year of life. 

 

4. Additional loss of p53 in Rnaseh2EKO mice enhances the epidermal IFN response 

and accelerates hyperproliferation and carcinogenesis 

In order to determine the effect of p53-dependent DNA damage responses on the 

Rnaseh2EKO phenotype, we crossed Rnaseh2EKO to Trp53-/- mice [34] and observed potent 

effects of Trp53 gene dose. Rnaseh2EKO mice heterozygous for the Trp53null allele showed 

ameliorated hyperpigmentation compared to p53-competent controls (Fig.S4a) and no sign 

of alopecia until the age of 40 weeks. All Rnaseh2EKO Trp53+/- mice that were allowed to age 

had to be sacrificed because of macroscopic ulcerations or skin tumors before the age of 40 

weeks. Histology showed that these lesions were invasive SSC of various stages and grades 

(Table S4, Fig.4a). 

Biallelic loss of Trp53 completely reverted the hyperpigmentation of Rnaseh2EKO (Fig.4b, 

Fig.S4a). While no generalized alopecia was observed, all of these animals developed 

inflamed lesions associated with circumscribed loss of hair and extensive scratching in the 

neck area, starting at about 12 weeks of age (Fig.4b). Massive pruritus and erosions of the 

neck skin invariably required euthanasia few weeks later. In all cases, histology identified 

KIN of different stages as the cause of the lesions (Fig.4c, Tables S5 and S6). Ki67 

immunostaining showed the massive proliferation of cells in all strata of the epithelium typical 

of KIN (Fig.4d). Inactivation of p53 signaling resulted in survival of more cells with a higher 

damage load as demonstrated by immunostaining for H2AX repair foci (Fig.4e, Fig.S4b) as 

compared to p53 competent Rnaseh2EKO skin (Fig.3a). Flow cytometric analysis of 

Rnaseh2EKOTrp53-/- skin revealed that the loss of hair follicle stem cells caused by epidermal 

RNase H2 deficiency was prevented by lack of p53. Interestingly, hair follicle stem cell 

numbers of Rnaseh2EKOTrp53-/- epidermis ranged about 3-fold higher compared to control 

numbers (Fig.4f). 

Compared to p53-competent Rnaseh2EKO mice, leukocyte infiltration was more pronounced 

in Rnaseh2EKOTrp53-/- skin (Fig.S4c). A potential reason for enhanced skin inflammation of 
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these animals might be potentiated cytokine responses as we found strongly increased ISG 

mRNA levels in total epidermis and in keratinocytes of Trp53-/- as compared to p53-proficient 

Rnaseh2EKO mice (Fig.4g), demonstrating that p53-dependent DNA damage responses 

control the intensity of the STING-induced IFN response mounted by RNase H2-deficient 

keratinocytes. While we have shown that type I IFN was not causing the inflammation of 

Rnaseh2EKO skin (Fig.2f), STING-mediated, NFκB-dependent proinflammatory cytokine 

expression, triggered in parallel to the IFN response, could be responsible for the enhanced 

inflammation of IFNAR-deficient Rnaseh2EKO skin. 

In summary, cancer development in Rnaseh2EKO mice is accelerated by additional absence 

of p53. This finding demonstrates that p53-dependent elimination of epithelial cells with high 

damage load potently antagonizes oncogenic transformation of RNase H2-deficient 

epidermis.  

 

Discussion 

DNA polymerases do not replicate genomic DNA without mistakes. They incorporate 

nucleotides carrying the wrong base or wrong sugar at substantial rates. In order to ensure 

genome integrity, two DNA repair pathways operate on the newly synthesized strand to 

correct these replication errors. MMR, which removes nucleotides that do not base-pair 

correctly with the template strand, and RER, which removes ribonucleotides, that are 

incorporated into the genomic DNA at a rate of 1 every 7,600 nucleotides [12] and threaten 

genome stability. Humans and mice with genetic defects causing loss of mismatch repair 

activity are viable but exhibit strongly increased cancer risk [6, 7, 43]. Genetic defects of RER 

leading to inability to remove ribonucleotides from genomic DNA result in embryonic lethality 

in the mouse [12, 23] and most likely also in humans, as partial loss of function mutations of 

the genes encoding RNase H2, the enzyme essential for initiation of RER, can result in 

severe disease and biallelic complete null alleles have not been found [44]. 

We bypassed embryonic lethality of global RER deficiency by conditional inactivation of the 

Rnaseh2b gene only in the epidermis of the skin and observed spontaneous DNA damage 

and epithelial hyperproliferation, resulting in spontaneous cancer development in 100% of 

the animals within the first year of life. Thus, we showed that RER is essential to prevent 

malignant transformation.  

While the epithelium proliferated rapidly, it featured a high rate of keratinocyte apoptosis 

induced by p53 activation. Cancer development driven by epidermal RER deficiency was 

accelerated upon additional loss of one allele of the Trp53 gene. In Rnaseh2EKO mice 

harboring two Trp53 null alleles, the skin of neck and back transformed into one large 

confluent carcinoma in situ between 10 and 20 weeks of age. It seems likely that this process 

would have affected the entire skin and would have rapidly progressed to invasive SSC with 
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increasing age, if not for the fact that the animals had to be euthanized for severe itch and 

erosions. 

Carcinogenesis triggered by defective RNase H2 seems to require reduction of RNase H2 

activity to low levels. Mice in which RNase H2 activity was reduced to 30% of control levels 

due to a homozygous Rnaseh2b partial loss-of-function mutation showed spontaneous 

activation of type I IFN responses but no sign of cancer by the age of 1 year [32]. Likewise, 

mice that carried a biallelic knock in of a Rnaseh2a partial loss-of-function mutation, reducing 

RNase H2 activity to few percent of normal levels, and that were rescued from perinatal 

lethality by additional inactivation of STING were not reported to develop neoplastic disease 

[31]. However, investigation of cancer incidence in a larger cohort of older animals was 

hampered by the fact that only a small fraction of these mice survived into adulthood [31].  

We observed accelerated proliferation of Rnaseh2EKO epidermis, resulting in epidermal 

hyperplasia and thickening of the cornified layer (hyperkeratosis) despite greatly increased 

rates of keratinocyte apoptosis. An important inducer of apoptosis in Rnaseh2EKO skin was 

p53, since additional loss of p53 resulted in significant further acceleration of epithelial 

hyperproliferation. These rapid cell divisions in response to keratinocyte genome damage 

ensuing from RER deficiency likely reflect a response program that the epidermis executes 

upon exposure to multiple forms of DNA damage, aiming at improved light protection by 

increasing thickness of epidermis and cornified layer, associated with enhanced melanin 

production, as we also observed in our animals. This response is activated for example upon 

over-exposure to UV irradiation [45]. Enhanced epidermal proliferation upon genome 

damage also results in elimination of damaged cells through rapid epithelial turnover, which 

represents an alternative keratinocyte disposal pathway in addition to apoptosis [46]. 

Damaged basal cells arrest in late S-phase, detach from the basement membrane and get 

eliminated into the cornified layer [46]. 

Accelerated epithelial turnover in Rnaseh2EKO skin was associated with disturbed hair cycle 

regulation with progressive loss of hair follicle stem cells and hair follicle function. This might 

be a result of exhaustion of this stem cell population due to increased demand for 

differentiated keratinocytes, but may also reflect loss of hair follicle stem cells through 

apoptosis or terminal differentiation and transepidermal elimination. The latter was described 

to be the major cause for physiological hair follicle aging and for premature hair follicle 

deterioration enforced by ionizing irradiation or genetic defects of nucleotide excision repair 

[47]. Other epidermal stem cell populations were not reduced in numbers, likely reflecting 

differential responses to genome damage caused by defective RER. Specific responses of 

different stem cell populations to genome damage are documented in various tissues [48]. 

Hair follicle stem cells were found to be more resistant to cell death induction by ionizing 

irradiation compared to other epidermal stem cell populations due to their capability to rapidly 
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repair double strand breaks by non-homologous end joining and high level expression of the 

anti-apoptotic protein Bcl2 [49]. Epidermis-specific inactivation of homologous recombination 

repair by conditional knock out of BRCA1, however, resulted in selective depletion of hair 

follicle stem cells [50], similar to the loss of hair follicle stem cells in our Rnaseh2EKO animals. 

In both mouse lines, loss of hair and hair follicle stem cells are largely rescued by additional 

inactivation of the Trp53 gene [50], indicating p53-dependent cell death induction by RER 

deficiency in these cells. Additional absence of p53 in Rnaseh2EKO mice not only restored 

stem cell numbers to control levels, but resulted in three-fold higher hair follicle stem cell 

numbers compared to RER competent controls, likely reflecting pre-neoplastic expansion of 

this population. 

Rapid progression to cancer in 100% of the animals with epidermis-specific loss of RER 

activity, even despite intact p53 signaling, raises the question of whether mutations impairing 

RER are relevant for human cancer. However, the studies of cancer incidence in AGS 

patients carrying defects of RNASEH2 genes are hampered by their reduced life span [51]. 

Germline mutations compromising RER as well as somatic defects of RER acquired by 

growing tumor clones could affect tumor biology in two opposite ways. On one hand, DNA 

damage ensuing from unrepaired ribonucleotides causes genomic instability, thus promoting 

carcinogenesis and tumor progression. On the other hand, high rates of tumor cell death or 

senescence induction by persistent DNA lesions will antagonize malignant growth and can 

confer a competitive disadvantage to tumor cells. The net effect, tumor promotion or 

suppression, likely depends on the degree to which RER activity is reduced. A window of low 

RER activity advantageous for tumor growth may exist. The net effect of RER deficiency on 

cancer biology likely also depends on tumor type, as different cell types and cells of the 

same type but different differentiation stage show specific responses to DNA damage 

ranging from apoptosis and senescence to enforced differentiation [48, 52]. In addition to 

detection of damage by nuclear sensors likely occurring in RNase H2-deficient cells, 

micronucleus formation associated with RER deficiency and subsequent micronuclear 

envelope rupture were shown to lead to frequent exposure of chromosomal DNA to the 

cytosolic DNA sensor cGAS, resulting in the activation of STING [24]. STING is also 

activated upon DNA damage by herniation of chromatin into the cytosol [26]. The potent type 

I IFN response we observed in Rnaseh2EKO skin most likely reflects activation of the cGAS-

STING axis. Potentiation of this IFN response in the absence of functional p53 strongly 

suggests that genome damage is responsible for STING activation in our animals, as lack of 

p53 allows cells with high damage load producing IFN to survive longer. STING can trigger 

differential responses, including senescence or apoptosis as well as antiviral and 

inflammatory cytokine production stimulating immune activation, depending on signal 

strength and cell type. RER-deficient epidermis invariably develops cancer despite robust 
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STING activation and production of type IFN, which can strongly boost anti-tumor immunity 

[53]. Intriguingly, STING-mediated innate immune responses can also promote neoplastic 

growth, as STING activation by micronuclear DNA in chromosomally unstable cancer cells 

was recently shown to drive metastasis by activation of non-canonical NF-kB signaling [54]. 

Assessing contributions of RER defects to human cancer requires studies correlating 

frequencies of partial loss-of-function mutations in RNASEH2 genes, either in the germ-line 

or the tumor tissue of the patients, in particular cancer entities. Increased frequencies of 

RNASEH2B partial loss-of-function mutations were found in the germline of sporadic prostate 

cancer patients compared to control cohorts [55]. RNASEH2B partial loss-of-function 

mutations were also detected at higher frequencies in non-tumor DNA of glioma patients with 

familial cancer predisposition and co-segregated with manifestation of cancer in some of the 

families [55]. These findings provide first hints that compromised RER activity can be 

associated with human cancer.  
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Figure Legends 

 

Figure 1. Epithelial hyperproliferation and stem cell exhaustion in mice lacking RNase H2 in 

the epidermis (Rnaseh2EKO) 

a) Macroscopic phenotype of 15 week-old Rnaseh2EKO mouse and a control 

(Rnaseh2bFL/FLCre-negative) littermate.  

b) Representative histology of back skin from a 12 week-old Rnaseh2EKO and a control 

(Rnaseh2bFL/FLCre-negative) littermate. Left: hematoxylin-eosin (H&E) staining showing focal 

epithelial thickening and hyperkeratosis (thickening of cornified layer) of mutant epidermis 

(see supplementary material for detailed histopathological findings); right: Ki67 

immunostaining showing increased proliferation of mutant epidermis. Scale bars 40µm. 

Graph shows numbers of Ki67+ interfollicular epidermal cells per high power field (40x); 

mean ± SD, *p=0.014 (5 weeks), **p=0.0039 (10-12 weeks), ***p=0.0007 (18-21 weeks), 

*p=0.0101 (30 weeks). 

c) Detection of apoptotic cells in interfollicular epidermis by immunostaining for active 

caspase 3 in back skin sections of Rnaseh2EKO mice and control (Rnaseh2bFL/FLCre-

negative) littermates. Representative images are shown. Scale bar 50 µm.  

d) Quantification of active caspase 3 per mm epidermal length (n=6-10 per group and time 

point); means ± SD, **p=0.0073 (10-13 weeks), ***p<0.0001 (18-21 weeks). 

e) Quantification of ‘active’ hair follicles (i.e. follicles extending beyond the dermal collagen 

into the dermal adipose layer, thus including follicles in anagen II-VI and early catagen 

stages) per low power (10x) field in H&E stained back skin sections of Rnaseh2EKO mice and 

control (Rnaseh2bFL/FLCre-negative) littermates; means ± SD, *p=0.0391 (10-13 weeks), 

*p=0.0335 (18-21 weeks). 

f) Flow cytometric quantification of epithelial stem cell populations in back skin of 

Rnaseh2EKO mice and control (Rnaseh2bFL/FLCre-negative) littermates. See Fig.S1 for gating. 

SCs, stem cells; HFSC, hair follicle stem cells; IFE, interfollicular epidermis; mean and SD, 

**p=0.0011 (suprabasal bulge SCs, 20 weeks), *p=0.0205 (bulge SCs, 10-12 weeks), 

**p=0.0033 (bulge SCs, 20 weeks), *p=0.0239 (IFE+ infundibulum SCs, 20 weeks). 
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Figure 2. Loss of RNase H2 in the epidermis results in spontaneous type I IFN response 

and inflammation 

a) Representative Rnaseh2EKO back skin section (age 10-12 weeks) immunostained for 

CD45 (purple) for identification of hematopoietic cells (see supplementary material for 

detailed histopathological findings). Original magnification x200. 

b) Quantification of CD45+ leukocytes in single cell suspensions prepared from the epidermal 

compartment of back skin from 10-12 week-old Rnaseh2EKO (EKO) mice (n=10) and control 

(Rnaseh2bFL/FLCre-negative) littermates (n=9). Mean and SD, ***p<0.0001. 

c) Comparison of ISG transcript levels determined by qRT-PCR in RNA extracted from total 

epidermis of 10-12 and 20 week-old Rnaseh2EKO (EKO) mice to the mean obtained for 

control (Rnaseh2bFL/FLCre-negative) littermates (10-12 wk n=6, 20 wk n=3) which was set to 

1 (dotted line).10-12 weeks: **p=0.0018 (Oasl1), *p=0.0105 (Ifi44), *p=0.0162 (Viperin), 20 

weeks: *p=0.0242 (Oasl1), **p=0.0061 (Ifi44), *p=0.0246 (Viperin). 

d) Comparison of gene expression profiles of FACS-purified CD45+ leukocytes from 

epidermis of 12 week-old Rnaseh2EKO (EKO) mice (n=7) and control (Rnaseh2bFL/FLCre-

negative) littermates (n=6) based on RNA sequencing. Significantly (p<0.05) deregulated 

genes in black. Significantly deregulated ISGs in red. 

e) Macroscopic phenotype of an 11 week-old Ifnar1-/-Rnaseh2EKO mouse (note 

hyperpigmentation of ears, tail and paws, and almost complete hair loss) and a control 

(Ifnar1-/-Rnaseh2bFL/FLCre-negative) littermate.  

f) Quantification of CD45+ leukocytes in the epidermis of 10-12 week-old Ifnar1-/-Rnaseh2EKO 

(EKO) mice (n=7) and control (Rnaseh2bFL/FLCre-negative) littermates (n=7). Mean and SD, 

***p=0.0009. 

g) Flow cytometric quantification of hair follicle stem cell populations in back skin of 10-12 

week-old Ifnar1-/-Rnaseh2EKO mice (n=7) and control (Ifnar1-/-Rnaseh2bFL/FLCre-negative) 

littermates (n=7). See Fig.S1f for gating; mean and SD, ***p<0.0001, *p=0.0209. 
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Figure 3. Loss of RNase H2 in the epidermis results in spontaneous DNA damage and skin 

cancer 

a) Immunostaining of H2AX repair foci (green) in back skin of 10-13 week-old Rnaseh2EKO 

(EKO) mice (n=7) and control (Rnaseh2bFL/FLCre-negative) littermates (n=6). Left: 

Representative result for EKO and control (DAPI counterstaining). Scale bars 5 µm. Right: 

Quantification of H2AX foci per nucleus. At least 220 nuclei (interfollicular epidermis) were 

counted per animal. Mean and SD, ***p<0.0001 (one-way ANOVA). 

b) Comparison of gene expression profiles of FACS-purified keratinocytes from epidermis of 

9-12 week-old Rnaseh2EKO (EKO) mice (n=3) and control (Rnaseh2bFL/FLCre-negative) 

littermates (n=3) based on RNA sequencing. Significantly (p<0.05) deregulated genes in 

black. Significantly deregulated p53-inducible genes in red. 

c) Incidence of macroscopic lesions (ulcerations and tumors) in Rnaseh2EKO mice. Graph 

indicates the time points at which euthanasia was required for these lesions.  

d) Representative histology of the lesions represented in c). Upper panels, H&E-stained 

section of Rnaseh2EKO skin adjacent to ulceration showing characteristic features of 

keratinocyte intraepithelial neoplasia (KIN, i.e. cancer that has not yet broken through the 

basement membrane); scale bars 200 µM left, 100 µM right. Ki67 immunostaining (lower 

right) demonstrates proliferating Ki67+ cells in all strata of the epithelium as is characteristic 

of KIN; scale bar 40µM. Macroscopic tumor in the genital area of a 36 week-old Rnaseh2EKO 

mouse histologically (lower left) proved to be invasive SSC (table S3, animal 62166); scale 

bar 200 µm. See supplementary material for detailed histopathological findings.  

e) Incidence of invasive SSC and incidence of cancer of all stages (KIN and/or SSC) in 

Rnaseh2EKO mice. *p=0.0131 (log-rank test). 
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Figure 4. Additional loss of p53 in Rnaseh2EKO mice enhances the epidermal IFN response 

and accelerates hyperproliferation and cancerogenesis. 

a) Incidence of invasive SSC (left) and of cancer of all stages (KIN and/or SSC, right) in 

Rnaseh2EKO mice that were Trp53WT/- or Trp53-/-. Cancer incidence of Trp53WT/WT Rnaseh2EKO 

mice from Fig.3e shown in light grey for comparison. ***p<0.0001 both (log-rank test). 

b) Macroscopic phenotype of a 10 week-old Trp53-/-Rnaseh2EKO mouse and an 11 week-old 

control (Trp53-/-Rnaseh2bFL/FLCre-negative). Note normal pigmentation (tail and paws) of the 

mutant, in contrast to Trp53wtwtRnaseh2EKO mice (Fig.1a). Except for an inflamed, 

hyperkeratotic lesion in the neck with circumscribed hair loss, the fur is largely normal. 

c) Representative H&E-stained neck skin section of a Trp53-/-Rnaseh2EKO mouse sacrificed 

for severe itching and erosions. Note typical features of KIN, including massive thickening of 

epidermis and severe dysplasia of the epithelium (irregular nuclear shape, numerous mitotic 

figures also in upper strata). See supplementary material for detailed histopathological 

findings. Scale bar left panel 50 µm, inset 20 µm. 

d) Immunostaining of neck skin sections of 10-12 week-old Trp53-/-Rnaseh2EKO mice (n=4) 

and control (Trp53-/-Rnaseh2bFL/FLCre-negative) littermates (n=8) for Ki67. Representative 

image of Trp53-/-Rnaseh2EKO skin. Scale bar 50 µm. Graph shows numbers of Ki67+ 

epidermal cells per randomly placed high power (40x) field. Mean and SD, ***p<0.0001. 

e) Quantification of H2AX repair foci in immunostainded back skin of 10-13 week-old p53-/-

Rnaseh2EKO (EKO) mice (n=4) and control (Trp53-/-Rnaseh2bFL/FLCre-negative) littermates 

(n=4). Number of foci was counted in at least 220 nuclei (interfollicular epidermis and 

follicles) per animal. See Fig.S4b for images. Mean and SD, ***p<0.0001 (one-way ANOVA). 

f) Flow cytometric quantification of epithelial stem cell populations in back skin of 10-12 

week-old Trp53-/-Rnaseh2EKO mice (n=6) and control (Trp53-/-Rnaseh2bFL/FLCre-negative) 

littermates (n=5). See Fig.S1f for gating; mean and SD, ***p=0.0001. 

g) Comparison of ISG transcript levels determined by qRT-PCR in RNA extracted from total 

epidermis (left) or FACS-purified keratinocytes (right) of 10-12 week-old Trp53+/+Rnaseh2EKO 

and Trp53-/-Rnaseh2EKO mice to the mean obtained for the respective control group, which 

was set to 1. left: ***p=0.0005 (Oasl1), ***p<0.0001 (Ifi44), **p=0.0066 (Viperin), right: 

**p=0.0042 (Oasl1). (p53 deficiency alone did not cause a spontaneous IFN response, see 

Fig.S4d.) 











Supplementary information. 

 

1. Histopathological characterization of mutant skin 

Fig.1b. Back skin of 12 week-old Rnaseh2EKO mouse, hematoxylin-eosin staining: 

Acanthotic, hyperkeratotic epidermis with focal keratinocyte atypia. 

 

Fig.2a. Back skin of 7 week-old Rnaseh2EKO mouse, anti-CD45 immunostaining:  

Follicular hyperkeratosis associated with interface-dermatis, i.e. hydropic degeneration of the 
lower epidermis and junctional infiltration of lymphoid immune cells. This inflammation 
pattern is typical of early SLE skin lesions. 

 

Fig.3d upper panels. Rnaseh2EKO back skin adjacent to spontaneous ulceration, 
hematoxilin-eosin staining: 

Advanced keratinocyte intraepithelial neoplasia (KIN III) in the peri-lesional skin: epidermal 
hyperplasia with full-thickness dysplasia, disordered dyspolarity, loss of maturation, and 
nuclear pleomorphism with hyperchromasia. Dyskeratotic cells and mitoses are present at all 
levels of the epidermis. 

Classification of lesions into KIN I-III was according to Figueras et al.39. Briefly, KIN I is 
defined by Focal atypia of basal keratinocytes, involving only the lower third of the epidermis, 
KIN II by atypia of keratinocytes within the two lower thirds of the epidermis and KIN III by 
“full thickness dysplasia” with atypical cells extending to the upper layers. 

 

Fig.3d lower left. Macroscopic tumor in the genital area of a 36 week-old Rnaseh2EKO 
mouse, hematoxilin-eosin staining:  

Fully developed invasive squamous cells carcinoma. Invasion of the dermis by atypical 
keratinocytes with hyperchromatic nuclei. Tumor cells present with prominent mitotic activity, 
keratin pearl formation and premature cornification. 

 

Fig.4b. Hairless, inflamed and scaly back skin of a 15 week-old Trp53-/-Rnaseh2EKO 
mouse.  

KIN II. Irregular hyperplasia of the epithelium with keratinocyte atypia within the lower and 
middle layers of the epidermis. Prominent hyperchromatic nuclei and increased mitotic 
activity.  

 

 

 

 



 

Figure S1 (related to figure 1). Efficient inactivation of RNase H2 in the epidermis, and skin 
phenotype of Rnaseh2EKO mice. 

a) Quantification of Rnaseh2b mRNA levels in total epidermis of newborn Rnaseh2EKO mice 
(n=4) displayed as fold change compared to mean of control (Rnaseh2bFL/FLCre-negative) 
littermates (n=4). The epidermal layer was separated from the underlying dermis by protease 
digest. Non-epithelial cells contained in the epidermis (melanocytes, immune cells) likely 
account for most of the residual Rnaseh2b mRNA in the Rnaseh2EKO mice. 

b) Quantification of Rnaseh2a, b and c mRNA levels in populations FACS-purified from 
epidermal single cell suspensions of Rnaseh2EKO mice and control (Rnaseh2bFL/FLCre-
negative) littermates by mRNA sequencing. Left: CD45-negative 6 integrin (CD49f)+ 

epithelial cells; right: CD45+ hematopoietic cells were sorted as a control population. 

Normalized numbers of reads mapping to the respective gene are shown. Each dot 
represents one mouse. Mean and SD, *** P<0.001. 

c) RNase H2 activity in lysates of FACS-sorted keratinocytes (CD45-negative 6 integrin+) 
from newborn Rnaseh2EKO mice (n=3) and control (Rnaseh2bFL/FLCre-negative) littermates 
(n=4). Cleavage of a dsDNA substrate containing a single ribonucleotide was measured and 
activity was calculated from the slope of the graphs. Means are shown, ***<0.001 (two-way 
ANOVA). 
 
d) Thickness of back skin folds of Rnaseh2EKO mice (EKO) and control (Rnaseh2bFL/FLCre-
negative) littermates (ctrl) determined using an engineer’s caliper. Each dot represents one 
animal. Means and SD, *** P<0.001. Increased skin thickness at 10-12 weeks likely reflects 
abundance of hair follicles in anagen phase (associated with thicker dermal adipose tissue) 
in Rnaseh2EKO mice, whereas anagen follicles are virtually absent in control back skin at this 
time point. 



e) Quantification of total numbers of hair follicles in back skin sections of Rnaseh2EKO mice 
and control (Rnaseh2bFL/FLCre-negative) littermates. Means and SD. 

f) Gating strategy for flow cytometric quantification of epidermal stem cell subpopulations in 
skin cell suspensions according to Jensen et al.54. (1) Bulge stem cells, (2) junctional zone 
stem cells, (3) infundibulum and interfollicular epidermis stem cells, (4) suprabasal bulge 
stem cells, (5) isthmus stem cells, (6) infundibulum and interfollicular epidermis stem cells. 

 

 



 

 

Figure S2. Spontaneous type I IFN response and inflammation in Rnaseh2EKO skin. 

a) Comparison of ISG transcript levels determined by qRT-PCR in RNA extracted from 
keratinocytes FACS-purified from 10-12 week-old Rnaseh2EKO (EKO) mice (n=4) to the mean 
obtained for control (Rnaseh2bFL/FLCre-negative) littermates (n=3) which was set to 1 (dotted 
line). * P<0.05. 

b) Control experiment demonstrating abrogation of type I IFN responses in Rnaseh2EKO mice 
deficient for the type I IFN receptor. Rnaseh2EKOIfnar1-/- and IFNAR-competent Rnaseh2EKO 
mice were intraperitoneally injected with 200 µg polyI:C. 18 hours later, total RNA was 
extracted from spleen tissue and transcript levels of the indicated ISGs were determined by 
qRT-PCR. Means of IFNAR-competent controls were set to 1 (dotted line) and the fold 
difference of results obtained for Rnaseh2EKOIfnar1-/- mice compared to this mean of controls 
is displayed. 

c) Representative histology of back skin from a 11 week-old Ifnar1-/-Rnaseh2EKO mouse. 
Hematoxylin-eosin (H&E) staining shows that focal epithelial thickening and hyperkeratosis 
(thickening of cornified layer) characteristic of Rnaseh2EKO mice (Fig.1b) is not abrogated by 
additional inactivation of type I IFN-receptor expression. Scale bars 40 µm. 

 

 

 



 

Figure S4. Influence of p53-deficiency on phenotype of Rnaseh2EKO mice. 

a) Comparison of macroscopic phenotypes of 12 week-old Rnaseh2EKO, Trp53+/-Rnaseh2EKO 
Trp53-/-Rnaseh2EKO animals. Note hyperpigmentation of tail, paws and ears depending on 
Trp53 gene dose. Hair loss of the Trp53WT/WTRnaseh2EKO animal is not yet manifest at this 
time point.  

b) Representative images of Trp53-/-Rnaseh2EKO and control skin sections immunostained for 
H2AX. Note numerous repair foci indicating strand breaks in keratinocyte nuclei of the 
mutant skin. Scale bar 5 µm.  

c) Intense skin inflammation in an 11 week-old Trp53-/-Rnaseh2EKO mouse (Left). Note high 
number of nuclei in the dermal collagen representing mostly infiltrating immune cells. Scale 
bar 50 µm. Quantification of CD45+ leukocytes (right) in the epidermis of 10-12 week-old 
p53-deficient Rnaseh2EKO (EKO) mice (n=5) and control (Rnaseh2bFL/FLCre-negative) 
littermates (n=5). Mean and SD, *** P<0.001. 

d) Control experiment excluding significant effects of p53-deficiency alone on type I IFN 
responses. ISG transcript levels were quantified by qRT-PCR in RNA extracted from total 
epidermis of 10-12 week-old animals. Graph shows results for Trp53-/- animals in comparison 
to mean of wt controls (n=4), which was set to 1.  



Gene_Symbol log2FoldChange padj
Ptgds 2,293 0
Ddit4l 2,409 0
Stfa1 2,289 0
Rhou 1,444 0,001
Ly6a 1,396 0,002
Klhl42 1,778 0,003
Irgm1 1,04 0,003
Ifi27l2a 1,694 0,003
Aoah 1,961 0,005
Ltf 1,933 0,005
Ly6f 1,457 0,006
Igfbp5 1,66 0,006
AW112010 1,081 0,006
Gbp5 1,778 0,01
Nppb 1,786 0,014
Tmem119 1,798 0,015
Serpinb3b 1,728 0,015
Mx1 1,773 0,016
Oasl1 1,686 0,019
Timp1 1,61 0,026
S100a9 1,697 0,026
Fbxo31 1,045 0,03
Ms4a6b 1,262 0,033
Pde7b 1,482 0,035
Rsad2 1,612 0,035
Ednrb 1,402 0,038
Ifitm1 1,407 0,041
Cxcl10 1,478 0,042
Lef1 1,552 0,044
Ifit3 1,503 0,044
 

Table S1. Transcripts have been identified as inducible by type I interferon using the 
Interferome v2.0 online tool.  

 

 

 

 

 

 

 

 



Gene_Symbol log2FoldChange padj
Abcb1b 2,813726278 1,35E-57
Ddit4l 2,025563734 1,17E-16
Ptp4a3 1,726522094 9,00E-21
Eda2r 1,6152473 5,00E-11
Ccng1 1,436712585 2,32E-17
Serpine2 1,417437977 5,77E-09
Ptgds 1,241128915 2,79E-21
Pmaip1 1,162864775 7,31E-13
Fos 1,111640973 3,31E-15
Mgmt 1,060691526 3,86E-06
Tnfrsf10b 1,041716403 2,17E-06
Fas 1,018445501 7,54E-05
Trp53inp1 1,205832504 8,23E-10
 

Table S2. Transcripts regulated by p53 in response to DNA damage have been 
identified using the Ingenuity Pathway Analysis (IPA) software (Qiagen).  

 



RNaseH2EKO mice 
animal age (wks) macroscopic finding histopathological diagnosis 
60292 36 ulceration back  KIN3 
60295 48 tumor ear KIN2 with massive hyperkeratosis 
60345 36 ulceration back  KIN2 
60364 34 ulceration back  KIN2 
60368 23 tumor neck SSC grade 1-2 
61572 40 ulceration back  

tumor mandibular/auricular region 
KIN3 and SSC grade 1 
SSC grade 1 

61914 55 ulceration neck 
ulceration back 
ulceration ear 

KIN3 
KIN3 and SSC grade 1 
KIN2 

61915 38 ulceration neck/back 
hyperkeratotic tumor ear 

KIN3 and SSC grade 1 
KIN1 

61918 45 tumor mandibular/auricular region SSC grade 1-2 
61919 38 tumor ear SSC grade 1 
62073 43 tumor ear SSC grade 1 
62166 36 tumor genital area SSC grade 1-2 
62168 23 ulceration neck/back KIN2 
62170 40 tumor mandibular/auricular region SSC grade 2 

 
Table S3. Histology of skin lesions (ulcerations or tumors) that required euthanasia of 
RNaseH2EKOTrp53WT/WT mice. Classification of lesions into KIN1-3 was according to 
Fernandez Figueras42. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Rnaseh2bFL/FLK14-Cre+Trp53+/- 

 
Table S4. Histology of skin tumors that required euthanasia of RNaseH2EKOTrp53+/- mice. 
Classification of lesions into KIN1-3 was according to Fernandez Figueras42. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

animal Age (wks) macroscopic finding histopathological diagnosis 
64200 41 hyperkeratotic tumor ear KIN III and initial SSC grade 1 
64231 33 hyperkeratotic tumor ear KIN III 3 and initial SSC grade 1 
64527 36 hyperkeratotic tumor ear SSC grade 1-2 
64528 36 tumor ear  

tumor leg 
tumor abdomen 

SSC grade 2 
SSC grade 2 
SSC grade 2 

64646 33 hyperkeratotic tumor ear  KIN III and SSC grade 1 
65162 33 tumor snout SSC grade 1-2, (cystic growth pattern) 
65163 29 tumor mandibular/auricular 

region 
SSC grade 1-2, (cystic growth pattern) 

65164 33 tumor ear  SSC grade 1 
65165 35 tumor ear   

tumor leg 
SSC grade 1-2 
SSC grade 2 



RNaseH2EKOTrp53-/- and controls (Rnaseh2bFL/FL Cre-negative Trp53-/-) 
animal genotype age (wks) histopathologic diagnosis 
58544 control 11 no abnormality detected 
64526 control 10 no abnormality detected 
65705 control 11 no abnormality detected 
65706 control 11 no abnormality detected 
65711 control 11 no abnormality detected 
66005 control 12 no abnormality detected 
66006 control 12 no abnormality detected 
66417 control 13 no abnormality detected 
58644 RNaseH2EKO 10 KIN II 
59215 RNaseH2EKO 10 KIN I 
59222 RNaseH2EKO 10 KIN I 
64311 RNaseH2EKO 11 KIN II 
65707 RNaseH2EKO 11 KIN I 
66134 RNaseH2EKO 11 KIN II 
66654 RNaseH2EKO 11 KIN II 

 
Table S5. Histology of neck skin in RNaseH2EKOTrp53-/- and control (Rnaseh2bFL/FL Cre-
negative Trp53-/-) mice aged 10-13 weeks. By this time, all RNaseH2EKOTrp53-/- mice had 
developed mildly hyperkeratotic and inflamed lesions in the neck that were itchy, while skin 
of littermate controls appeared normal. Classification of lesions into KIN1-3 was according to 
Fernandez Figueras42. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



RNaseH2EKOTrp53-/-  
animal Age (wks) histopathological diagnosis 
59795 18 KIN III 
60303 16 KIN II 
61855 12 KIN II 
61909 12 KIN II 
63489 13 KIN III 
63616 13 KIN III 
64642 16 KIN III 
64884 15 KIN III 
64942 15 KIN III 

 
Table S6. Neck skin of RNaseH2EKOTrp53-/- mice that had to be killed for exacerbation of the 
inflamed, hyperkeratotic skin lesions. Mice scratched extensively and neck skin was eroded. 
Classification of lesions into KIN1-3 was according to Fernandez Figueras42. 
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