653 research outputs found

    Effect of multiple reusing of simulated air showers in detector simulations

    Full text link
    The study of high energy cosmic rays requires detailed Monte Carlo simulations of both, extensive air showers and the detectors involved in their detection. In particular, the energy calibration of several experiments is obtained from simulations. Also, in composition studies simulations play a fundamental role because the primary mass is determined by comparing experimental with simulated data. At the highest energies the detailed simulation of air showers is very costly in processing time and disk space due to the large number of secondary particles generated in interactions with the atmosphere. Therefore, in order to increase the statistics, it is quite common to recycle single showers many times to simulate the detector response. As a result, the events of the Monte Carlo samples generated in this way are not fully independent. In this work we study the artificial effects introduced by the multiple use of single air showers for the detector simulations. In particular, we study in detail the effects introduced by the repetitions in the kernel density estimators which are frequently used in composition studies.Comment: 15 pages and 4 figure

    SGARFACE: A Novel Detector For Microsecond Gamma Ray Bursts

    Full text link
    The Short GAmma Ray Front Air Cherenkov Experiment (SGARFACE) is operated at the Whipple Observatory utilizing the Whipple 10m gamma-ray telescope. SGARFACE is sensitive to gamma-ray bursts of more than 100MeV with durations from 100ns to 35us and provides a fluence sensitivity as low as 0.8 gamma-rays per m^2 above 200MeV (0.05 gamma-rays per m^2 above 2GeV) and allows to record the burst time structure.Comment: 29 pages, 14 figures, accepted for publication in Astroparticle Physic

    Cosmic ray acceleration at supergalactic accretion shocks: a new upper energy limit due to a finite shock extension

    Full text link
    Accretion flows onto supergalactic-scale structures are accompanied with large spatial scale shock waves. These shocks were postulated as possible sources of ultra-high energy cosmic rays. The highest particle energies were expected for perpendicular shock configuration in the so-called "Jokipii diffusion limit", involving weakly turbulent conditions in the large-scale magnetic field imbedded in the accreting plasma. For such configuration we discuss the process limiting the highest energy that particles can obtain in the first-order Fermi acceleration process due to finite shock extensions to the sides, along and across the mean magnetic field. Cosmic ray outflow along the shock structure can substantially lower (below ~10^18 eV for protons) the upper particle energy limit for conditions considered for supergalactic shocks.Comment: A&A, accepte

    Cosmic-Ray Events as Background in Imaging Atmospheric Cherenkov Telescopes

    Full text link
    The dominant background for observations of gamma-rays in the energy region above 50 GeV with Imaging Atmospheric Cherenkov telescopes are cosmic-ray events. The images of most of the cosmic ray showers look significantly different from those of gamma-rays and are therefore easily discriminated. However, a small fraction of events seems to be indistinguishable from gamma-rays. This constitutes an irreducible background to the observation of high-energy gamma-ray sources, and limits the sensitivity achievable with a given instrument. Here, a Monte Carlo study of gamma-like cosmic-ray events is presented. The nature of gamma-like cosmic-ray events, the shower particles that are responsible for the gamma-like appearance, and the dependence of these results on the choice of the hadronic interaction model are investigated. Most of the gamma-like cosmic ray events are characterised by the production of high-energy pi0's early in the shower development which dump most of the shower energy into electromagnetic sub-showers. Also Cherenkov light from single muons can mimic gamma-rays in close-by pairs of telescopes. Differences of up to 25% in the collection area for gamma-like proton showers between QGSJet/FLUKA and Sibyll/FLUKA simulations have been found.Comment: Accepted by Journal of Astroparticle Physic

    Using {\sc top-c} for Commodity Parallel Computing in Cosmic Ray Physics Simulations

    Get PDF
    {\sc top-c} (Task Oriented Parallel C) is a freely available package for parallel computing. It is designed to be easy to learn and to have good tolerance for the high latencies that are common in commodity networks of computers. It has been successfully used in a wide range of examples, providing linear speedup with the number of computers. A brief overview of {\sc top-c} is provided, along with recent experience with cosmic ray physics simulations.Comment: Talk to be presented at the XI International Symposium on Very High Energy Cosmic Ray Interaction

    Ultra-high energy cosmic rays may come from clustered sources

    Get PDF
    Clustering of cosmic-ray sources affects the flux observed beyond the cutoff imposed by the cosmic microwave background and may be important in interpreting the AGASA, Fly's Eye, and HiRes data. The standard deviation, sigma, in the predicted number, N, of events above 10^{20} eV is sigma/N = 0.9(r_0/10 Mpc)^{0.9}, where r_0 is the unknown scale length of the correlation function (r_0 = 10 Mpc for field galaxies). Future experiments will allow the determination of r_0 through the detection of anisotropies in arrival directions of ~ 10^{20} eV cosmic-rays over angular scales of Theta ~ r_0/30 Mpc.Comment: Accepted for publication in Astrophysical Journa

    Two-Dimensional particle-in-cell simulations of the nonresonant, cosmic-ray driven instability in SNR shocks

    Full text link
    In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the "knee" at 10^{15.5}eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized non-propagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves, can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times we observe saturation of the instability in the simulation, but the mechanism responsible is an artefact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.Comment: 18 pages, 6 figures, accepted for publication in Ap

    Neutrino initiated cascades at mid and high altitudes in the atmosphere

    Get PDF
    High energy neutrinos play a very important role for the understanding of the origin and propagation of ultra high energy cosmic rays (UHECR). They can be produced as a consequence of the hadronic interactions suffered by the cosmic rays in the acceleration regions, as by products of the propagation of the UHECR in the radiation background and as a main product of the decay of super heavy relic particles. A new era of very large exposure space observatories, of which the JEM-EUSO mission is a prime example, is on the horizon which opens the possibility of neutrino detection in the highest energy region of the spectrum. In the present work we use a combination of the PYTHIA interaction code with the CONEX shower simulation package in order to produce fast one-dimensional simulations of neutrino initiated showers in air. We make a detail study of the structure of the corresponding longitudinal profiles, but focus our physical analysis mainly on the development of showers at mid and high altitudes, where they can be an interesting target for space fluorescence observatories.Comment: To appear in Astroparticle Physic

    The energy spectrum observed by the AGASA experiment and the spatial distribution of the sources of ultra-high energy cosmic rays

    Full text link
    Seven and a half years of continuous monitoring of giant air showers triggered by ultra high-energy cosmic rays have been recently summarized by the AGASA collaboration. The resulting energy spectrum indicates clearly that the cosmic ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK) cut-off at 5×1019\sim 5 \times 10^{19} eV. Furthermore, despite the small number statistics involved, some structure in the spectrum may be emerging. Using numerical simulations, it is demonstrated in the present work that these features are consistent with a spatial distribution of sources that follows the distribution of luminous matter in the local Universe. Therefore, from this point of view, there is no need for a second high-energy component of cosmic rays dominating the spectrum beyond the GZK cut-off.Comment: 14 pages, 4 figures, Astrophys. J. Letters (submitted
    corecore