45,919 research outputs found

    Active control of primary mirror of an orbiting telescope with thermal excitation

    Get PDF
    The generalization is presented that was made to model a layered structure of a kind that represents a light-weighted mirror. This theory is presented along with the strategy for error suppression. The results of a variety of error-suppression studies are also presented. The computer programs for all parts of this study are included

    A Reversibility Parameter for a Markovian Stepper

    Get PDF
    Recent experimental studies on the stepwize motion of biological molecular motors have revealed that the ``characteristic distance'' of a step is usually less than the actual step size. This observation implies that the detailed-balance condition for kinetic rates of steps is violated in these motors. In this letter, in order to clarify the significance of the characteristic distance, we study a Langevin model of a molecular motor with a hidden degree of freedom. We find that the ratio of the characteristic distance to the step size is equal to unity if the dominant paths in the state space are one dimensional, while it deviates from unity if the dominant paths are branched. Therefore, this parameter can be utilized to determine the reversibility of a motor even under a restricted observation.Comment: 6 pages, 2 figures - minor revision

    Symmetry group analysis of an ideal plastic flow

    Full text link
    In this paper, we study the Lie point symmetry group of a system describing an ideal plastic plane flow in two dimensions in order to find analytical solutions. The infinitesimal generators that span the Lie algebra for this system are obtained. We completely classify the subalgebras of up to codimension two in conjugacy classes under the action of the symmetry group. Based on invariant forms, we use Ansatzes to compute symmetry reductions in such a way that the obtained solutions cover simultaneously many invariant and partially invariant solutions. We calculate solutions of the algebraic, trigonometric, inverse trigonometric and elliptic type. Some solutions depending on one or two arbitrary functions of one variable have also been found. In some cases, the shape of a potentially feasible extrusion die corresponding to the solution is deduced. These tools could be used to thin, curve, undulate or shape a ring in an ideal plastic material

    Evaluation of high temperature structural adhesives for extended service, phase 4

    Get PDF
    The evaluation of three phenylquinoxaline polymers as high temperature structural adhesives is presented. These included an experimental crisskubjabke oiktner (X-PQ) and two experimental materials (PPQ-2501) and (PPQ-HC). Lap shear, crack extension, and climing drum peel specimens were fabricated from all three polymers, and tested after thermal, combined thermal/humidity, and stressed Skydrol exposure. All three polymers generally performed well as adhesives at initial test temperatures from 219K (-67 F) to 505K (450 F) and after humidity exposure. The 644K (700 F) cured test specimens exhibited superior Skydrol resistance and thermal stability at 505K (450 F) when compared to the 602K (625 F) cured test specimens

    An Investigation of the Large-scale Variability of the Apparently Single Wolf-Rayet Star WR 1

    Get PDF
    In recent years, much studies have focused on determining the origin of the large-scale line-profile and/or photometric patterns of variability displayed by some apparently single Wolf-Rayet stars, with the existence of an unseen (collapsed?) companion or of spatially extended wind structures as potential candidates. We present observations of WR 1 which highlight the unusual character of the variations in this object. Our narrowband photometric observations reveal a gradual increase of the stellar continuum flux amounting to Delta v = 0.09 mag followed by a decline on about the same timescale (3-4 days). Only marginal evidence for variability is found during the 11 following nights. Strong, daily line-profile variations are also observed but they cannot be easily linked to the photometric variations. Similarly to the continuum flux variations, coherent time-dependent changes are observed in 1996 in the centroid, equivalent width, and skewness of He II 4686. Despite the generally coherent nature of the variations, we do not find evidence in our data for the periods claimed in previous studies. While the issue of a cyclical pattern of variability in WR 1 is still controversial, it is clear that this object might constitute in the future a cornerstone for our understanding of the mechanisms leading to the formation of largely anisotropic outflows in Wolf-Rayet stars.Comment: 11 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Topological Interactions in Warped Extra Dimensions

    Get PDF
    Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.Comment: 40 pages, 10 figures, 2 tables; modifications in the KK parity discussion, final version at JHE

    Opportunities for use of exact statistical equations

    Full text link
    Exact structure function equations are an efficient means of obtaining asymptotic laws such as inertial range laws, as well as all measurable effects of inhomogeneity and anisotropy that cause deviations from such laws. "Exact" means that the equations are obtained from the Navier-Stokes equation or other hydrodynamic equations without any approximation. A pragmatic definition of local homogeneity lies within the exact equations because terms that explicitly depend on the rate of change of measurement location appear within the exact equations; an analogous statement is true for local stationarity. An exact definition of averaging operations is required for the exact equations. Careful derivations of several inertial range laws have appeared in the literature recently in the form of theorems. These theorems give the relationships of the energy dissipation rate to the structure function of acceleration increment multiplied by velocity increment and to both the trace of and the components of the third-order velocity structure functions. These laws are efficiently derived from the exact velocity structure function equations. In some respects, the results obtained herein differ from the previous theorems. The acceleration-velocity structure function is useful for obtaining the energy dissipation rate in particle tracking experiments provided that the effects of inhomogeneity are estimated by means of displacing the measurement location.Comment: accepted by Journal of Turbulenc

    Advanced thermoplastic resins, phase 1

    Get PDF
    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures
    corecore