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1 Introduction

The origin of electroweak symmetry breaking (EWSB) is one of the most important ques-

tions in particle physics and will likely lead to the discovery of new organizing principles

beyond the standard model. As we enter the era of the Large Hadron Collider (LHC) with

the promise of new discoveries of new states in nature, it remains nonetheless unclear how

much of the deeper organizing context for EWSB can be understood at the TeV scale.

For instance, consider solutions of the gauge hierarchy problem involving theories with

a compact extra dimension in AdS space [1]. These are thought to be a dual description of

a large-N , D = 4, strongly coupled sector characterized by conformal dynamics [2, 3]. The

low energy spectrum, however, is typically populated by an assortment of new vector reso-

nances with various standard model quantum numbers, and possibly new heavy fermions.

We might then seek probes that could reveal the deeper UV completion structure. These

can arise from anomalous, or “topological” processes, associated with the gauge dynamics of

chiral fermions, much like the low energy process, π0 → 2γ, counts the quark colors in QCD.

Chiral fermions are required as part of the low energy spectrum of any model, often

arising by chiral localizations in extra dimensional models, whereby left-handed fermions

occur at one place in the bulk, whilst their right-handed anomaly-canceling partners occur

elsewhere. This has immediate implications for the anomaly structure of such theories,

or more properly, the Chern-Simons (CS) term structure. The CS term propagates the
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anomaly from one chiral fermion to another and maintains the anomaly cancellation across

the extra dimension. Although it is well understood that anomalies in orbifold theories

are brane-localized and canceled by a suitable bulk CS term, the associated observable

consequences of CS terms have not been fully elaborated in the literature. This is important

since the associated CS interactions, involving gauge KK-modes, point to fundamental

aspects of the underlying theory in analogy to π0 → 2γ in QCD.

Anomalies and CS terms in extra dimensional models have been previously considered

in the literature. These descend from gauge boson solitons that are topological objects,

such as the instantonic vortex, arising inD = 5 and whose conserved currents are generated

by the CS term [4–6]. In ref. [7], deconstruction was used to show how anomalies are can-

celed in theory space by the Wess-Zumino-Witten (WZW) terms present on each link, as

well as illustrating the appearance of the CS term in the continuum limit of a flat compact

extra dimension (see also [8]). To cancel anomalies in orbifold theories with delocalized

chiral zero modes, CS terms must necessarily occur. CS terms, in turn, produce physical

consequences: in D = 3 QED the CS term yields a mass for the photon and destroys Dirac

magnetic monopoles (see [9] and references therein). Likewise, in D = 5, CS terms lead to

observable physical effects, first pointed out in ref. [10], where, as a general consequence,

they violate KK-parities. This is analogous to the violation of π → −π spurious pion

parity in a chiral lagrangian of mesons by the WZW term in QCD. These physical effects

can most easily be understood by considering three very massive D = 5 bulk KK-mode

wave-packets each vanishing on the branes where the fermions are localized. The bulk CS

term operator will generally have a non-vanishing overlap integral for such wave-packets,

provided overall KK-mode parity is odd. The pure CS term in the bulk controls these inter-

actions. For lower KK modes, whose wave-functions touch the fermionic branes, the loop

diagrams of the localized fermions become relevant, leading to the counterterm structure

that enforces, e.g., vector-like current conservation [10] (or, alternatively, chiral current

conservation, with the appropriate counterterm [11]).

This observation has been applied in refs. [12, 13] to Little Higgs theories, which can be

viewed as deconstructed extra dimensional theories. Aside from identifying certain special

processes in electron or muon collider experiments that probe CS terms, a key result is

that it is generally difficult to maintain a stable dark matter KK-mode candidate in the

presence of CS terms. This is an effect that will recur in the present paper. Some aspects

of anomalies in warped extra dimension models were studied in ref. [14].

In this paper we will consider the remnant topological interactions at low energy re-

sulting from bulk Chern-Simons terms in theories with warped extra dimensions. In order

to clarify the origin of these new interactions amongst KK gauge bosons we first decon-

struct [15, 16] these theories (this was previously done in refs. [17–19]). Pure gauge boson

containing CS-term interactions are seen to be absent in two-site deconstructions.1 These

1This is strictly true for vector-like gauge zero-modes. A two site model is analogous to the chiral

constituent quark model U(N)L ×U(N)R with quarks qL and gauge bosons AL (qR and AR) on the L-site

(R-site), and a constituent quark mass involving pions. This can be viewed as descending from a vector-like

SU(N) D = 5 Yang-Mills bulk theory with chiral localizations generated by domain walls. A CS term is

present in D = 5 and becomes the WZW term in D = 4 that compensates the quarks consistent anomalies
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first appear in deconstructions with three or more sites. This has important consequences

in the phenomenology of these interactions in the continuum limit, most notably the fact

that — as long as the zero-mode gauge symmetry remains unbroken — these interactions

must involve the second KK mode of the gauge boson. Amongst the various interactions the

most accessible involves the gluon and its first and second KK modes. This results in a new

decay mode for the second KK mode: G(2) → G(1)g, which gives a non-negligible contribu-

tion to the G(2) width. It also allows for the associated production process pp→ G(2)G(1)

to be observable at the LHC as long as the KK masses are not too heavy, as is the case,

for instance, in warped Higgsless models.

We will show that the requirement that a second KK mode be present can be circum-

vented when one of the gauge bosons in the interaction is associated with a broken gauge

symmetry. This leads to many new interactions involving the Z boson with KK gauge

bosons and other zero modes. We will study the phenomenology of the most promising

interactions, including the one involving a gluon and its two first KK modes, as well as one

with a gluon, its first KK mode and the Z.

Finally, we consider a proposed warped extra dimension scenario with KK parity [20]

and show that the topological interactions do not break this symmetry, and still allow for

a stable dark matter candidate in the lightest KK-odd particle.

In the next section we consider in detail the deconstruction [15, 16] of a warped D = 5

theory including fermions and gauge bosons. A complete treatment of fermions in warped

extra dimension theories is not present in the literature and is central for our derivations.

In deconstruction, the CS term becomes a sum over interlinking WZW terms. In unitary

gauge, where all KK-modes eat their corresponding Nambu-Goldstone Bosons (the link

field phases) the sum over WZW terms immediately reduces to the discretized version of

the CS term. None of this makes any sense, however, without utilizing Wilson fermions

in deconstructed theories. We make use of the Wilson fermion action for warped theories,

first introduced in refs. [8, 17], and further developed here. It is crucial for our derivation

of the WZW terms which give rise to the bulk Chern-Simons terms in the continuum

limit. This is done in section 3, in the limit of extreme zero-mode fermion localization,

ref. [20], where we also explicitly show how anomaly cancellation works. In section 4 we

show that the existence and detailed form of the induced topological interactions depend

on the localization of zero-mode fermions. In section 5 we derive the remnant processes of

interest for phenomenological applications: interactions among three vector states involving

Kaluza-Klein modes of the gauge bosons. We show how these interactions arise from the

Chern-Simons terms paying particular attention to gauge invariance. Finally, in section 6

we study some of the phenomenological consequences of these interactions, such as collider

signals at the LHC, as well as the induced breaking of KK parity in models with a Z2-

symmetric warp factor. We conclude in section 7.

on the walls. The WZW term contains trilinear and quadrilinear ”pCS” terms [11] at this stage, but

when the quarks are integrated out, a Bardeen counterterm is generated, conserving the vector currents,

enforcing the Landau-Yang theorem and annihilating the pCS terms. In a three site model even with quarks

integrated out and conserved zero-mode vector currents, the pCS terms involving higher KK-modes remain.

Note that one can modify the counterterm when the L, or R currents are conserved, as in Standard Model

gauging. This is then not a vector-like scheme.
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2 Deconstruction of a warped extra dimension

In order to clarify the presence of remnant topological interactions in theories with warped

extra dimensions and chiral zero modes, we will deconstruct the extra dimension [15, 16].

The deconstruction of warped extra dimensions has been studied for the gauge sector in

ref. [18, 19], whereas fermions are also considered in ref. [17]. We first briefly review the

warped extra dimension scenario in the continuum.

We start with one extra dimension y compactified on an orbifold S1/Z2, with −L ≤
y ≤ L, and with the metric [1]

ds2 = e−2kyηµνdx
µdxν − dy2 ≡ gMNdx

MdxN (2.1)

where µ = 0, 1, 2, 3, k is the AdS5 curvature and ηµν = diag(+ − −−) is the 4D Minkowski

metric. In the following, we will use Greek letters for 4D indexes and Latin letters for 5D in-

dexes.

For fermions and gauge bosons propagating in the bulk of AdS5, the 5D action is then

given by [21, 22]

S5 =

∫

d4x

∫ L

0
dy
√
g

[

− 1

2 g2
5

Tr[F 2
MN ] + i Ψ̄ ΓM∇M Ψ + MΨ Ψ̄Ψ + . . .

]

. (2.2)

Not shown are the 5D Ricci scalar and the cosmological constant. The fifth dimension y is

compactified with the IR (UV) branes located at the y = L (0) of the fifth dimension. FMN

is the field strength of the gauge group, which can be either Abelian or non-Abelian. The

gamma matrices are defined as ΓM = eAMγA, where eAM is the vielbein, and γA = (γα, iγ5)

is defined in the tangent space. The curved space covariant derivative is ∇M = DM +ωM ,

with the spin connection ωM = (k
2 γ5 γµe

−ky, 0). The fermion Dirac mass is MΨ ≡ c k, and

is assumed to be the result of the vacuum expectation value of a scalar field odd under a

Z2 transformation defined by y → −y.
Before deconstructing this model, we review the spectrum of KK modes and their

5D wave functions, both for gauge bosons and fermions. By choosing Neumann-Neumann

boundary conditions for the gauge boson in the following way: ∂5Aµ(0) = ∂5Aµ(L) = 0 and

A5(0) = A5(L) = 0, the Aµ has a 4D zero mode with a flat profile in the fifth dimension.

The equation of motion for the massive Kaluza-Klein (KK) modes is [21, 22]

∂2
5fn − 2 k ∂5fn +m2

n e
2 k yfn = 0 , (2.3)

where the KK expansion is given by

Aµ(x, y) ≡ 1√
L

∞
∑

n=0

fn(y)An
µ(x) , A5(x, y) ≡

1√
L

∞
∑

n=1

∂5fn(y)

mn
An

5 (x) , (2.4)

with the normalization condition g−2
5

∫ L
0 f2

ndy = 1. The solution of the gauge boson KK

modes is

fn(y) =
ek y

Nn

[

J1

( mn

k e−ky

)

+ b1Y1

( mn

k e−ky

)]

, (2.5)
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where b1 is a function of the KK mode mass mn and is determined by the boundary

conditions, and Nn is a normalization factor.

Fermions must transform under the Z2 symmetry as Ψ(−y) = ±γ5Ψ(y) with γ5 =

diag(1,−1). In terms of Dirac spinors Ψ = ΨR + ΨL, the zero mode of ΨR(ΨL) is even for

Ψ(−y) = +γ5Ψ(y) (Ψ(−y) = −γ5Ψ(y)). Therefore, the choice of the boundary condition

makes the low energy effective 4D theory chiral. The equation of motion for the fermion

KK modes is given by

∂2
5h

n
L,R − 2 k ∂5 h

n
L,R +

(

3

4
− c(c± 1)

)

k2 hn
L,R + m2

n e
2ky hn

L,R = 0 , (2.6)

with “+” for the left-handed modes and “–” for the right-handed modes. Here,

ΨL,R ≡
e

3
2

k y

√
L

∞
∑

n=1

hn
L,R(y)ψn

L,R(x) , (2.7)

and the normalization condition 1
L

∫ L
0

∣

∣

∣
hn

L,R

∣

∣

∣

2
dy = 1. The solutions for the fermion KK

modes are then

hn
L,R(y) =

ek y

Nn

[

J|c± 1
2
|

( mn

k e−ky

)

+ b|c± 1
2
|Y|c± 1

2
|

( mn

k e−ky

)]

. (2.8)

withNn normalization factors. The fermion zero modes have an exponential profile given by

h0
L,R(y) =

1

N0
e(

1
2
∓c)k y . (2.9)

Therefore, a left-handed zero mode is UV (IR)-localized for cL > 1/2 (cL < 1/2). On the

other hand, a right-handed zero mode is UV (IR)-localized for cR < −1/2 (cR > −1/2).

In a wide class of warped extra-dimension models, both left-handed and right-handed

zero-modes of SM fermions are mostly UV-localized for all fermions except for the third

generation quarks. Typically in these models, in order to obtain a large enough top quark

mass, tR is localized close to the IR brane, with the third generation quark doublet (tL bL)T

somewhere in between the IR and UV branes. We will show later that it is precisely due to

the different fifth-dimension profiles for the top quark chiral zero modes, that there exist

physical topological interactions among gauge bosons.

2.1 Deconstruction of the 5D gauge theory and the dictionary

In order to establish a dictionary between the continuum theory and the 4D deconstructed

one, we start with the purely bosonic 4D moose model with N+1 sites depicted in figure 1.

This results in the action

SG
4 =

∫

d4x







− 1

2 g2

N
∑

j=0

Tr
[

F j
µνF

jµν
]

+

N
∑

j=1

Tr |DµUj|2






, (2.10)

with the covariant derivative given by DµUj = ∂µUj + iAj−1
µ Uj − i Uj A

j
µ with Aj

µ ≡
Aj

a,µ ta, where the link fields Uj transform as (n, n̄) under SU(n)j−1× SU(n)j and ta is the
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U1 U2 UN

SU(n)0 SU(n)1 SU(n)2 SU(n)NSU(n)N−1

Figure 1. Deconstruction of a gauge theory in a warped extra dimension. The circles represent

SU(n) gauge groups. The zeroth site and the N -th site are identified as the UV and IR brane in

the continuous theory, respectively. The link scalar fields Uj , are (n, n̄) under SU(n)j−1× SU(n)j .

generator of SU(n) normalized as tr[tatb] = 1
2δ

ab. We assume that the vacuum expectation

values (VEVs) of Uj break SU(n)j−1 × SU(n)j to the diagonal group by minimizing some

potentials. In the non-linear parametrization, we have Uj =
vj√
2
ei Gj/vj In, where the Gj

are the Nambu-Goldstone bosons of the breaking of SU(n)j−1 × SU(n)j , and vj are the

corresponding VEVs. Then, in the unitary gauge, we can write

SG
4 =

∫

d4x







− 1

2 g2

N
∑

j=0

Tr
[

F j
µνF

jµν
]

+
1

2

N
∑

j=1

Tr
[

vj(A
j−1
µ −Aj

µ)
]2







. (2.11)

In order to match to the continuum warped extra-dimension theory, we choose the VEV

in each site as

vj ≡ v qj , (2.12)

such that 〈Uj〉 = v√
2
qj with 0 < q < 1. Hence, from the zeroth site to the N -th site, the

VEVs of the link field are decreasing. We identify the zeroth site as the UV brane and

the N -th site as the IR brane when we match this discretized 4D model to the continuum

warped space.

To justify the choice of the VEVs in eq. (2.12), we need to show that the spectra and

the wave-functions of the gauge bosons agree with the results in the continuum limit. For

convenience, we choose the unitary gauge, in which the gauge boson mass matrix in the

basis (A0, A1, . . . , AN ) can be written in powers of q as

M2
g = g2 v2





































q2 −q2 0 0 · · · 0 0

−q2 q2 + q4 −q4 0 · · · 0 0

0 −q4 q4 + q6 −q6 · · · 0 0

...
...

...
... · · · ...

...

0 0 0 0 · · · q2(N−1) + q2N −q2N

0 0 0 0 · · · −q2N q2N





































. (2.13)

We define the orthonormal rotation matrix between the gauge basis An and mass basis

A(n) as Aj
µ =

∑N
n=0 fj,nA

(n)
µ . Solving this eigensystem problem, we arrive at the following

difference equations [23]

(

q + q−1 − q−1(xn q
−j)2

)

fj,n − q fj+1,n − q−1 fj−1,n = 0 , (2.14)
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The corresponding Neumann-Neumann “boundary conditions” are: f0,n = f−1,n and

fN,n = fN+1,n, with xn = mn/(g v). For the gauge boson zero mode, it is easy to show

that fj,0 = 1/
√
N + 1 , i.e. the solution is a flat profile. For the massive modes, we define

the variable t[j] = xn q
−j and the function F (t[j]) = qj fj,n to change eq. (2.14) to

(q + q−1 − q−1t2)F (t) − F (t q−1) − F (t q) = 0 . (2.15)

The above difference equation is a special case of the Hahn-Exton equation [24–26]. Its

solutions are the so-called q-Bessel functions Jν(t; q2) for ν = 1 in the mathematical liter-

ature. The solution of the difference equation in (2.15) is

fj,n = Rn q
−j
[

J1(xn q
−j; q2) + b1(xn; q2)Y1(xn q

−j; q2)
]

, (2.16)

with Rn determined from wave-function normalization. This corresponds to the j-site

“wave-function” of the n-th KK gauge boson, and it allows us to construct the mass

eigenstates A
(n)
µ . Imposing the boundary conditions around j = 0 and j = N mentioned

above, we obtain b1(xn; q2) and the following equation [23]

J0(xn; q2)Y0(xn q
−(N+1); q2)− Y0(xn; q2)J0(xn q

−(N+1); q2) = 0 , (2.17)

the solution of which gives the mass spectrum. This procedure is very similar to the

one followed in the continuum. In fact it can be shown that in the continuum limit,

corresponding to q → 1−, the solutions (2.16) to the discrete equation of motion match to

the solutions (2.5) for the wave-functions of the KK gauge bosons in the continuum. It is

also easy to show that the mass eigenvalues match to the KK-mode masses of the continuum

theory. We can see the equivalence of both theories by using the following dictionary

1

g2
↔ a

g2
5

(2.18)

vj ↔ e−kaj

a
(2.19)

We can then rewrite (2.11) as

SG
5 =

a

g2
5

∫

d4x







−1

2

N
∑

j=0

Tr
[

F j
µνF

jµν
]

+
1

2

N−1
∑

j=0

e−2kaj Tr

(

Aj+1
µ −Aj

µ

a

)2






, (2.20)

where a is the constant lattice spacing, and g5 is the 5D gauge coupling. With these re-

placements and taking the limit a → 0, N → ∞ for N a = L, we obtain the 5D gauge

action in the continuum

SG
5 =

∫

d4x

∫ L

0
dy
√
g

{

− 1

2 g2
5

Tr[F 2
MN ]

}

. (2.21)
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2.2 Deconstruction of the warped fermion theory

In order to write down the deconstructed version of the fermion theory in warped extra

dimensions, it is convenient to rewrite the fermion action in (2.2) as

Sf
5 =

∫

d4x

∫ L

0
dy
{

e−3ky Ψ̄iγµD
µΨ + e−4ky MΨΨ̄Ψ− e−4ky Ψ̄γ5

←→
∂5 Ψ

}

(2.22)

in the A5 = 0 gauge, with
←→
∂5 ≡ (1/2)(

−→
∂5 −

←−
∂5). Naively deconstructing this 5D theory

results in the N + 1 site action

Sf
5 =

∫

d4x

N
∑

j=0

{

ψ̄j
Li/∂ψ

j
L + ψ̄j

Ri/∂ψ
j
R + e−kaj MΨ ψ̄

jψj

+
e−kaj

2a

(

ψ̄j
Rψ

j+1
L − ψ̄j

Lψ
j+1
R + h.c.

)

}

, (2.23)

which is obtained after proper normalization of the fermion kinetic terms (absorbing e−3ky/2

into the fermion field). However, the theory described by (2.23) is not the correct discretiza-

tion of the continuum action since it leads to doubling of all levels, and in particular to two

massless chiral fermions, i.e. two zero modes. This is a reflection of the well known fermion

doubling problem in lattice gauge theories. A solution to this problem is the introduction

of a Wilson term in the 5D action [27] of the form

SW = η a

∫

d4x

∫ L

0
dy
√
g Ψ̄ (∂5)

2 Ψ , (2.24)

where at this point η is an arbitrary coefficient. The Wilson term in (2.24) is a higher-

dimensional operator suppressed by a, and therefore vanishes in the continuum limit. The

discretization of the compact dimension in (2.24) gives

SW = η

∫

d4x

N
∑

j=0

e−kaj

a

{

ψ̄j
Lψ

j+1
R + ψ̄j

Rψ
j+1
L − 2ψ̄j

Lψ
j
R + h.c.

}

, (2.25)

where we have already properly normalized fermion fields. The full discretized action is

then obtained when adding (2.25) to (2.23)

Sf
5 + SW =

∫

d4x
N
∑

j=0

{

ψ̄j
Li/∂ψ

j
L + ψ̄j

Ri/∂ψ
j
R + e−kaj

(

MΨ −
2η

a

)

ψ̄jψj

+

[(

η − 1

2

)

e−kaj

a
ψ̄j

Lψ
j+1
R +

(

η +
1

2

)

e−kaj

a
ψ̄j

Rψ
j+1
L + h.c.

]}

. (2.26)

We can see that by choosing η = ±1/2 it is possible to eliminate one of the hopping

directions in the lattice, which results in removing one of the two zero modes. For instance,

for η = 1/2, we obtain

Sf
5 + SW =

∫

d4x

N
∑

j=0

{

ψ̄j
Li/∂ψ

j
L + ψ̄j

Ri/∂ψ
j
R +

e−kaj

a
(cka− 1) ψ̄jψj

+

(

e−kaj

a
ψ̄j

Rψ
j+1
L + h.c.

)}

. (2.27)
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U1 U2 UN

ψ̄R,0

ψL,0

SU(n)0

ψL,1 ψL,2 ψL,N−1 ψL,N

ψ̄R,1 ψ̄R,2 ψ̄R,N−1

SU(n)1 SU(n)2 SU(n)NSU(n)N−1

Figure 2. Moose diagram to deconstruct the warped extra dimension model with fermions. The

circles represent SU(n) gauge groups. The zeroth and N -th sites are identified as the UV and

IR branes in the continuum theory, respectively. The out-going (in-going) arrows represent chiral

fermions in the fundamental (anti-fundamental) representation of SU(n). The link scalar fields,

Ui, are (n, n̄) under SU(n)i−1 × SU(n)i. The dotted lines represent Yukawa couplings for chiral

fermions. Boundary conditions imply the absence of ψ̄R,N leading to a left-handed zero mode. To

obtain a right-handed zero mode, one has a similar moose diagram with the same hopping direction

but different boundary conditions, which correspond to removing ψL,0.

corresponding to only one hopping direction, as illustrated in figure 2.

Thus, the 5D theory can be written as a purely four-dimensional model corresponding

to the moose diagram in figure 2. The generic form of the Lagrangian of this N + 1 site

moose diagram is given by

L = −1

2

N
∑

j=0

Tr
[

F j
µν F

µν,j
]

+
N
∑

j=1

Tr |∂µUj + i g Aj−1
µ Uj − i g Uj A

j
µ|2

+

N
∑

j=1

λTr (ψ̄R,j−1 Uj ψL,j + h.c.) +

N
∑

j=0

Tr (µj ψ̄L,j ψR,j + h.c.) + . . . , (2.28)

where we have used the canonical kinetic terms for the gauge fields and absorbed the group

generator into Aj
µ, and “Tr” acts on the group indexes. Here, we have not included the

scalar potential, which fixes the link field VEVs 〈Uj〉 =
vj√
2

= v√
2
qj . In order to match to

the theory in the continuum limit, we have found that the following conditions should be

satisfied, in addition to the dictionary in eq. (2.19):

µj = −g v qc+j−1/2 , λ =
√

2 g , q → 1− . (2.29)

Just as for the case of gauge bosons, here q < 1 and q → 1− corresponds to taking the

continuum limit. The c parameter in the matching condition (2.29) for µj will be identified

as the bulk mass parameter in the continuum theory, which controls the localization of the

fermion zero mode.

We can repeat the same procedure followed for the gauge bosons in order to obtain

the difference equations leading to the solutions for the spectrum of fermion modes. The

– 9 –



J
H
E
P
0
2
(
2
0
1
0
)
0
4
9

fermion mass-squared matrix in the basis (ψL,0, ψL,1, . . . , ψL,N ) can be written as:

mT m=





































µ2
0 g µ0 v1 0 0 · · · 0 0

g µ0 v1 g
2v2

1 + µ2
1 g µ1 v2 0 · · · 0 0

0 g µ1 v2 g2v2
2 + µ2

2 g µ2 v3 · · · 0 0

...
...

...
... · · · ...

...

0 0 0 0 · · · g2v2
N−1 + µ2

N−1 g µN−1 vN

0 0 0 0 · · · g µN−1 vN µ2
N





































. (2.30)

Using the orthonormal rotation matrix ψL,j =
∑N

n=0 h
L
j,n ψL,(n) and substituting µj in

eq. (2.29) into the above equation, we arrive at the following difference equations

(

q−(c+ 1
2
) + q(c+

1
2
) − q−(c+ 1

2
)(xn q

−j)2
)

hL
j,n − q hL

j+1,n − q−1 hL
j−1,n = 0 . (2.31)

Similarly, for the right-handed fermions, we obtain

(

q−(c− 1
2
) + q(c−

1
2
) − q−(c− 1

2
)(xn q

−j)2
)

hR
j,n − q hR

j+1,n − q−1 hR
j−1,n = 0 . (2.32)

The solutions to the above two difference equations are

hL,R
j,n = RL,R

n q−j
[

J|c± 1
2
|(xn q

−j ; q2) + b|c± 1
2
|(xn; q2)Y|c± 1

2
|(xn q

−j; q2)
]

, (2.33)

with the “+” sign for left-handed fermions and “–” sign for right-handed fermions, and

where RL,R
n are normalization factors. These solutions match, in the continuum limit, to

the general solutions of the 5D theory given in (2.8). To obtain a chiral zero mode, we

choose the boundary condition hR
N,n = 0 for all n to get a left-handed zero-mode fermion,

and hL
0,n = 0 for all n to get a right-handed zero mode. These boundary conditions are

equivalent to removing ψR,N or ψL,0 from the theory and are illustrated in figure 2. For

instance, for the case of a left-handed zero mode and solving eq. (2.31), we have

hL
j+1,0

hL
j,0

= qcL − 1
2 . (2.34)

Since q < 1, the left-handed zero mode is therefore “localized” in theory space toward the

left side of the moose diagram for cL > 1/2, whereas for cL < 1/2, toward the N -th site.

Then, upon taking the continuum limit this choice matches the corresponding behavior of

a left-handed zero mode in the continuum theory, by identifying the zeroth site with the

UV brane and the N -th site with the IR brane. Conversely, for the right-handed zero mode

we obtain:
hR

j+1,0

hR
j,0

= q−(cR + 1
2
) , (2.35)
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left-handed fermion right-handed fermion

cL ≫ 1
2 (UV) ↔ µj

vj
→ 0 cR ≫ −1

2 (IR) ↔ µj

vj
→ 0

cL ≪ 1
2 (IR) ↔ µj

vj
→∞ cR ≪ −1

2 (UV) ↔ µj

vj
→∞

Table 1. Matching of the continuum theory and the discretized theory for different limits.

so that for cR > −1/2 the right-handed zero mode is “N -th-site” (IR) localized, whereas

for cR < −1/2 it is localized towards the zeroth site corresponding to UV localization in

the continuum.

It is useful to consider the behavior of these solutions in various limits and compare

them to the continuum limit case. For instance, if we are considering a left-handed zero

mode solution in the µj/vj → 0 limit, we see that this requires cL ≫ 1/2, which corre-

sponds to extreme UV localization in the continuum theory. On the other hand, the limit

µj/vj →∞ requires cL ≪ 1/2, which corresponds to extreme IR localization in the contin-

uum. Conversely, for a right-handed zero mode the limit µj/vj → 0 leads to cR ≫ −1/2,

corresponding to IR localization in the continuum, with the limit µj/vj →∞ corresponding

to a UV-localized right-handed zero mode. The matching between the continuum theory

and the discretized theory for various limits is illustrated in table 1. In the next section

we will make use of results obtained in these limits in order to compute the low energy

interactions induced after requiring anomaly cancellation.

3 Anomaly cancellation

Having completed our understanding of the deconstructed version of warped extra dimen-

sional theories and their continuum limit, we are now in a position to study the necessary

ingredients for anomaly cancellation in these theories. We will derive the Chern-Simons

terms for different gauge theories in warped extra dimensions, starting from the decon-

structed theory. However, one should notice that the procedure described in this section

can also be applied to flat extra-dimensions, since the CS terms only depend on the topo-

logical properties of gauge theories, and therefore should be independent of a particular

geometry. As an example, we explicitly work out the simplest case with a U(1) gauge group

propagating in the bulk. We first calculate the WZW terms based on the moose diagram

in the 4D theory, and then take the continuum limit to obtain the 5D CS terms. We then

move to compute the CS terms for non-Abelian as well as product gauge groups.

For the case of a U(1) gauge group, we consider two “bulk” fermions, Ψ and X, which

have ψ
(0)
L and χ

(0)
R as their left-handed and right-handed zero modes, respectively. Under

the U(1) gauge group, Ψ and X have the same charge Q, so the 4D anomaly is canceled

for the unbroken U(1) gauge group in the low energy theory. However, in the 5D theory or

in its deconstructed version, the anomaly is not canceled without additional terms. This

can be seen from figure 2, where there is a triangular anomaly at the N -th site for the Ψ
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field. Similarly, there is a triangular anomaly on the zeroth site for the X field. These

triangle anomalies can be canceled in the continuum theory by adding an appropriate CS

term [10, 28]. Here, we also want to show how the anomaly cancellation works in the

deconstructed theory and how to match to the CS term in the continuum.

Preserving the gauge symmetry, the deconstructed Lagrangian is

L = −1

4

N
∑

j=0

F j
µν F

µν,j +

N
∑

j=1

|∂µUj + i g Aj−1
µ Uj − i g Uj A

j
µ|2

+
N
∑

j=1

λ (ψ̄R,j−1 U
Q
j ψL,j + h.c.) +

N
∑

j=0

(µj ψ̄L,j ψR,j + h.c.) + . . . , (3.1)

The link field Uj is charged as (1,−1) under U(1)j−1 × U(1)j . Integrating out heavy

fermions with chiral masses, results in the appearance of WZW terms in the low energy

theory. In the case at hand, to integrate out all fermions other than the zero-mode and for

the most generic case µj/vj ∼ O(1), the action obtained will depend on the localization of

ψ
(0)
L and χ

(0)
R through these ratios [29]. Although it is possible to obtain the WZW terms

generated, their sum in the continuum limit has a non-trivial dependence on cR and cL
through non-local terms in the extra dimension. On the other hand, it is quite simple to

obtain the continuum result for the cases with µj/vj = 0 and µj/vj →∞.

First, let us consider the µj/vj = 0 limit for both Ψ and X fermions. As discussed

at the end of the previous section and in table 1, this corresponds to an extremely UV-

localized ψ
(0)
L and an extremely IR-localized χ

(0)
R . For the Ψ field, the fermion mass matrix

is “diagonal” in the sense that ψR,j−1 and ψL,j form a massive Dirac fermion without

mixing with other fermions. So, integrating out the massive fermions ψR,j−1 and ψL,j, we

arrive at a summation of WZW terms [30]

Seff =

N
∑

j=1

SWZW(Aj−1, Aj , Uj)

=
1

48π2

∫ N
∑

j=1

[

α4(QAj , ξ
Q
j d ξ

Q†
j ) − α4(QAj−1, ξ

Q†
j d ξQ

j ) − B(A
ξQ
j

j−1, A
ξQ†
j

j )

]

. (3.2)

Here, we defined ξj by Uj ≡ ξ2j ; A
ξQ
j

j−1 ≡ QAj−1 + ξQ†
j d ξQ

j , and the Bardeen counter-term

is defined by B(A1, A2) = 2(dA1 + dA2)A1A2 for this case at hand. We make use of 1-form

notation such that A ≡ g Aµ dx
µ and d ≡ dxµ∂/∂xµ. We omit the 4D Levi-Civita ǫ tensor,

so that any product of 1-forms and their derivatives are contracted by it. The 4-form α4

can be calculated by acting the homotopy operator on the CS 5-form and has the expression

α4(A,B) ≡ 2 dAAB for the U(1) case [31]. After some algebraic manipulations, we obtain

Seff =
Q3

48π2

∫ N
∑

j=1

[

2Aj−1 dAj−1Aj + 2Aj−1 dAj−1 Uj dU
†
j

+U †
j dUj dAj−1Aj − p.c.

]

, (3.3)
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where p.c. denotes parity conjugation such that Aj−1 ↔ Aj and Uj ↔ U †
j (for the non-

Abelian case, see ref. [7]). Taking the continuum limit (a → 0), we identify Aj−1 = A(y),

Aj = A+ a ∂5A and Uj = 1 + aA5, and keep only the terms of order a. Identifying aΣj as
∫

dy, we arrive at the CS term in the 5D theory:

Seff = −SCS =
−Q3

24π2

∫

AdAdA =
−Q3

24π2

∫

d5x ǫABCDEAA ∂B AC ∂D AE . (3.4)

One can check that all anomaly terms can be canceled by adding the CS term into the 5D

continuous theory [10]. It is easier to understand this cancellation in the deconstructed

moose theory. For the Ψ field, the boundary conditions are equivalent to removing the

right-handed particle ψR,N at the last site to obtain a left-handed zero mode. Therefore,

there exists a triangle anomaly at the last site by this “orbifolding” procedure. For the X

field with a right-handed zero mode, its boundary conditions are equivalent to removing the

left-handed fermion at the zeroth site. Altogether, we have the “brane” localized triangle

anomalies given by

δSbranes =
Q3

24π2

∫

θN dAN dAN − θ0 dA0 dA0 , (3.5)

with θj ≡ θj(x) the gauge transformation parameter for each site. Here, δS is the variation

of the action under gauge transformation. Performing gauge transformations on the CS

terms, we have

δSCS =
Q3

24π2

∫ N
∑

j=1

[θj−1 dAj−1 dAj−1 − θj dAj dAj ] = −δSbranes . (3.6)

Indeed, the addition of the variation of the CS term and the brane-localized triangle anoma-

lies cancel, making the full theory anomaly free. The anomaly cancellation in both the

deconstructed and continuum theories is depicted in the figure 3. The top figure in the

left panel in figure 3 depicts the deconstructed theory with a left-handed zero mode ψ
(0)
L ,

with the one at the bottom showing the case of a right-handed zero-mode χ
(0)
R . To cancel

the chiral anomalies on the end sites of the moose diagram, we add a summation of WZW

terms. In the continuum limit, shown in the right panel of figure 3, the WZW terms lead

to the CS term and the full theory is anomaly free.

We close this section by generalizing the procedure described above for the Abelian

case, to derive the CS terms for non-Abelian and product gauge groups, which will be used

later. For the non-Abelian case the CS terms are

SCS =
1

24π2

∫

Tr

[

AdAdA +
3

2
A3 dA +

3

5
A5

]

, (3.7)

which is non-zero only if the group has a non-zero fully-symmetric structure constant or

equivalently dabc = Tr[ta{tb, tc}] 6= 0. So, for SU(2), there is no second Chern-Simons

character and no corresponding terms in eq. (3.7).

To obtain a complete set of CS terms for realistic models, we also need to obtain the

WZW terms associated with product of gauge groups. For example, let us consider the SM

– 13 –



J
H
E
P
0
2
(
2
0
1
0
)
0
4
9

Ψ

X

+
∑

SWZW

R

L

L

R

IR

+ “orbifolding”

Ψ + X

+ SCS

UV

Figure 3. The anomaly cancellation for two fermions Ψ and X propagating in the bulk. The

“orbifolding” is chosen to have a left-handed zero mode for Ψ and a right-handed zero mode for X .

To cancel the gauge anomalies, a summation of WZW terms is needed in the deconstructed theory,

corresponding to a CS term in the continuum theory.

gauge bosons propagating in the bulk of the extra dimension and one bulk fermion with

charges (3, 2, Y ) under SU(3)c×SU(2)W ×U(1)Y . All the CS terms can be obtained simply

by replacing A in eq. (3.7) by A = G+W + Y B. Here, G, W and B are the gauge boson

fields of SU(3)c, SU(2)W , and U(1)Y in the one-form. The trace in eq. (3.7) is replaced by

Tr = Tr3 Tr2 Tr1 with the Tri’s acting on different gauge space and Tr1 = 1. So, we have

the CS terms for a product of gauge groups given by

SCS =
1

24π2

∫

Tr3 Tr2 Tr1

[

(G+W + Y B) d (G +W + Y B) d (G +W + Y B)

+
3

2
(G+W + Y B)3 d (G +W + Y B) +

3

5
(G+W + Y B)5

]

,

=
1

24π2

∫

NcNwY
3B dB dB + Nw Tr3

[

GdGdG +
3

2
G3 dG +

3

5
G5

]

+ 3Nc Y B Tr2
[

(dW +W 2)2
]

+ 3Nw Y B Tr3
[

(dG+G2)2
]

+ boundary terms , (3.8)

with total derivative terms neglected and Nc = 3 and Nw = 2.

4 Integrating out fermion KK modes

Having understood the anomaly cancellation in the extra dimension theory, we now consider

the low energy theory by integrating out the fermion KK-modes, and study the remaining

possible topological interactions among gauge bosons. Although anomaly cancellation is

independent of the fermion localization, the topological interactions of the gauge boson

KK modes indeed depend on the fermion profiles in the fifth dimension. To simplify our
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discussions in this paper, we continue working in the limits with µj/vj = 0 or µj/vj →∞ in

the deconstructed theory, equivalent to fermion zero-modes extremely localized on the IR

or UV branes in the continuum. We believe that these limits capture the general features

of warped extra dimension models, where the all fermion zero modes are localized close

to the UV brane except for the right-handed top quark, which typically is highly localized

close to the IR brane.

For the simple U(1) example in figure 3, we use the deconstructed theory as a guide

to perform the integration of the fermion KK modes. Taking the limit µj/vj → ∞ for

both Ψ and X, there are effectively no chiral-symmetry breaking links and all we have

are vector-like fermions, except on the end sites of the moose diagram. Then, after we

integrate out these heavy vector-like fermions, no additional WZW terms are generated

in the deconstructed theory. So, in the low energy theory, we have one left-handed zero

mode ψ
(0)
L on the N -th site, one right-handed zero mode χ

(0)
R on the zeroth site and the

original summation of WZW terms. Referring back to the continuum theory, we have

ψ
(0)
L on the IR bane, χ

(0)
R on the UV brane and the original CS term in the bulk, which

is schematically shown as the Case I of figure 4. The CS term in the bulk contains the

topological interactions among gauge bosons.

Taking the µj/vj → 0 limit for both fermions and integrating fermion KK modes, the

left-handed zero mode ψ
(0)
L is localized on the zeroth site and the right-handed zero mode

χ
(0)
R is on the N -th site. Furthermore, there is a sum of WZW terms corresponding to the

ψ
(0)
L tower and another one corresponding to the χ

(0)
R tower. One of the sums of WZW

terms cancels the original WZW terms and leaves just one sum of WZW terms, which has

opposite sign with respect to the original one. In the continuum limit, shown in the Case II

of figure 4, we have ψ
(0)
L on the UV brane and χ

(0)
R on the IR brane. The summation of CS

terms is 2Seff +SCS = −SCS, with Seff = −SCS in eq. (3.4) corresponding to the summation

of WZW terms. The remaining action is again anomaly free. For most of warped extra

dimension models the right-handed zero mode of the top quark is localized close to the

IR brane, whereas the left-handed zero mode is moderately UV-localized. Therefore, the

Case II in figure 4 can be used as an approximation for the top quark contributions in a

realistic model. The remnant CS term in the bulk contains physical interactions among

gauge boson KK modes. This result agrees with our intuition in a sense that because

of the different localizations of top quark left and right-handed zero modes, a nontrivial

topological interaction remains in the low energy theory.

Let us now consider the case where both the left-handed and right-handed zero modes

are UV-localized. In the deconstructed picture this is achieved by taking the µj/vj → 0

limit for the ψ
(0)
L tower, and µj/vj → ∞ for the χ

(0)
R one. Integrating out fermion KK

modes, there is only one summation of WZW terms generated from the ψ
(0)
L tower, which

is canceled by the original WZW terms in the theory. The χ
(0)
R tower has only vector-like

mass terms and therefore does not lead to any WZW terms. Therefore, as illustrated in

the Case III of figure 4, we only have two chiral zero modes localized in the UV brane and

no additional terms in the bulk. The same result is obtained for the case with both zero

modes localized in the IR, by switching the limits, and is shown in the Case IV of figure 4.
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cL ≪ 1
2 cR ≪ −1

2 cL ≫ 1
2

cR ≫ −1
2

cL ≫ 1
2 cR ≪ −1

2 cL ≪ 1
2 cR ≫ −1

2

Case III Case IV

Case I Case II

SCS

ψ
(0)
L

χ
(0)
R

IRUV UV IR

χ
(0)
R

ψ
(0)
L

ψ
(0)
L

χ
(0)
R

ψ
(0)
L

χ
(0)
R

UV IRUV IR

−SCS

Figure 4. Four different cases for the remaining low energy theory after integrating out heavy

fermions. All cases are anomaly free. For the Case I and II, the left-handed and the right-handed

zero modes are localized in different branes. This leads to a CS term, which contains physical

interactions among gauge boson KK-modes. For the Case III and IV, the left-handed and the right-

handed zero modes are localized in the same brane and no physical topological interactions are left.

In most realistic warped extra dimension models, and in order to satisfy various constraints

including electroweak precision observables and flavor changing processes, the first two gen-

erations of SM fermions have both left and right-handed zero modes localized towards the

UV brane. So, Case III can be thought of as an approximate description of the first two gen-

erations of fermions as well as the bottom quark. Then, we see that they do not contribute

new physical topological interactions. Once again, this result agrees with the intuition that

if the left and right-handed zero-mode fermions have the same profile in the fifth dimension,

the theory is “vector-like” and no new topological interactions should be generated.

Summarizing the discussion above, we see that when both chiralities of the zero modes

are localized at the same fixed point there are no remnant interactions, whereas such inter-

actions are generated when left and right-handed zero modes are localized at different ends

of the extra dimension. At least in these simplified cases, obtained in the extreme limits

µj/vj → 0 and/or µj/vj →∞, this confirms the intuition that the presence of these terms

is associated with the different localization of left and right-handed zero modes in the bulk.

Finally, in the more general case with finite values of the bulk fermion masses, we expect

that the form of the remnant interactions should depend on the bulk zero-mode wave-

functions, i.e. on the bulk mass parameters cL and cR. It is possible to obtain this general
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Ψ

X

R

L

L

R

IRUV

χ
(0)
R

ψ
(0)
L

Snon-local

Snon-local

+
∑

SWZW

−SCS

Figure 5. The triangular loop contribution to the gauge boson KK mode interactions from fermion

zero modes can be replaced by a non-local link in the deconstructed theory and a Wilson-like non-

local interaction in the continuum theory.

dependence in the deconstructed description [29]. However, the continuum limit of the

general case will have a complicated non-local dependence on cL and cR. In order to make

things more transparent, we will only consider the simplified limiting cases in the rest of the

paper. They should give us a good estimate of the types of physical effects we can expect.

5 Topological physical processes

In this section we show how the CS terms described in the previous section lead to actual

novel physical processes, as opposed to being just an artifact to cancel the anomalies.

Once again, we step back to the deconstructed description in order to better understand

the presence of these terms. Throughout the rest of the paper we will make use of the

results obtained for the limit µj/vj → 0, corresponding to a UV-localized left-handed zero

mode and an IR-localized right-handed zero mode (see Case II in figure 4). As we discuss

in the next section, we will use this setup as an approximation to warped extra dimension

models where tR is the only fermion significantly localized towards the TeV brane.

We are interested in physical processes involving gauge bosons and KK gauge bosons

from topological interactions. For these processes, the localized zero-mode fermions also

contribute to gauge boson interactions through triangular diagrams.2 In the deconstruction

language, their contributions can be obtained by adding a Wilson mass term for the chiral

fermions: λ χ̄R,N U ψL,0 + h.c., with U ≡ UNUN−1 . . . U2U1 connecting the two end sites.

The corresponding moose diagram and the related continuum theory are illustrated in

figure 5. Integrating out these two chiral fermions, leads to one more term in the topological

Lagrangian in addition to the CS term. The total topological interactions for the U(1) case

2Actually, those triangular loop contributions from zero-mode fermions are important to provide 4D

gauge invariant interactions after combined with interactions from the CS terms.
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now are

Stopo = − Q3

48π2

∫ N
∑

j=1

[

2Aj−1 dAj−1Aj + 2Aj−1 dAj−1 Uj dU
†
j + U †

j dUj dAj−1Aj

+ 2AN dAN A0 + 2AN dAN U dU † + U † dU dAN A0 − p.c.
]

, (5.1)

The above interaction is gauge invariant and captures all the necessary topological inter-

actions.

Before proceeding, we want to emphasize the fact that there are no topological interac-

tions among gauge bosons in the two-site model. The above equation is identically zero for

N = 1. However, for N = 2 in the three-site model with (+,+) boundary conditions for the

gauge fields (i.e. if the gauge symmetry is preserved in the low energy theory), one does have

a remnant physical interaction: B2B1 dB0, with Bi as the i’th KK-mode gauge bosons.

Thus, these remnant interactions will also be present in the continuum, although for the

(+,+) boundary conditions they will have to involve the first and second KK modes. On

the other hand, if (+,−) boundary conditions are imposed, the zero mode becomes massive

and two more interactions are allowed for this case: B2B1 dB1 and B1B0 dB0.

Taking the continuum limit of (5.1), the product of link fields becomes a Wilson line

connecting from the UV brane to the IR brane:

U = exp

(

−i
∫ L

0
dy A5 (y)

)

. (5.2)

Thus, the complete topological interactions are not just given by the CS terms, but we

must also add the non-local terms resulting from the second line in (5.1). This results in

− Stopo = SCS −
Q3

48π2

∫

d4x
[

2A(L) dA(L)A(0) + 2A(L) dA(L)U dU †

+U † dU dA(L)A(0) − p.c.
]

. (5.3)

One can explicitly check the gauge invariance of the above expression. The last term corre-

sponds to the non-local link in figure 5. In the unitary gauge, A5 = 0 and U = 1, we have

− Stopo =
Q3

24π2

∫

dx5AdAdA+
Q3

24π2

∫

d4x [A(0)dA(0)A(L) −A(L)dA(L)A(0)] . (5.4)

This action leads to interactions among KK gauge bosons. In the rest of this section,

we will compute the form of certain triple and quartic topological interactions in various

examples, which are going to be useful for phenomenological applications.

Abelian gauge group. Using eq. (5.4) and decomposing the 5D gauge boson into 4D

KK modes and concentrating on the zero and first KK modes, we have the following

interactions:

− Stopo =
Q3ḡ3

1

24π2L3/2

∫

d4xA(0)dA(0)A(1)

{
∫ L

0
dy2
[

f1(y)f0(y)∂yf
0(y)−f0(y)f0(y)∂yf

1(y)
]

+f1(L)f0(0)f0(0)− f1(0)f0(0)f0(L)− f1(0)f0(L)f0(L) + f1(L)f0(L)f0(0)
}

. (5.5)
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Here, ǫµνρ5σ = −ǫµνρσ is used, and ḡ1 is a 5D gauge coupling with mass dimension −1/2.

For (+,+) boundary conditions for the gauge bosons, we have a constant f0. Then, it

is straightforward to show that the coefficient of A(0) dA(0) A(1) vanishes.

− Stopo =
Q3

24π2

∫

d4xA(0) dA(0) A(1) × 0 . (+,+) (5.6)

This reflects the fact that the gauge symmetry is unbroken and this gauge-symmetry-

violating operator should be vanishing. However, if there was a boundary-localized Higgs

field breaking the gauge symmetry, this term will survive, with its coefficient suppressed

by the square of the ratio of the localized VEV over the IR brane scale.

For the case of (+,−) boundary conditions, we have f i(L) = 0. For this case, only

CS terms contribute to the topological interaction and the coefficient of A(0) dA(0) A(1) is

non-zero and is

− Stopo ≈
Q3 ḡ3

1

24π2 L3/2

∫

d4xA(0) dA(0) A(1) (− 2.4
√
kL)

≈ Q3 g3
1

24π2

∫

d4xA(0) dA(0) A(1) (− 2.4
√
kL) (+,−) , (5.7)

with the 4D gauge coupling g1 ≡ ḡ1/
√
L and kL ≫ 1. Once again, the non-zero value of

the coefficient reflects the fact that all gauge symmetries are broken.

Non-Abelian gauge group. We consider the non-Abelian gauge group SU(3)c. In the

unitary gauge, the total topological interaction is given by

− Stopo =
1

24π2

∫

Tr

[

GdGdG +
3

2
G3 dG +

3

5
G5

]

− 1

48π2

∫

Tr
[

G(L) dG(L)G(0)

+ dG(L)G(L)G(0) − G(0) dG(0)G(L) − dG(0)G(0)G(L)

+G3(L)G(0) − G3(0)G(L) − 1

2
G(0)G(L)G(0)G(L)

]

. (5.8)

Although the situation of the triple gauge boson interaction is similar to the one in the

Abelian case, we show the explicit result here because of its phenomenological relevance.

For the relevant case with (+,+) boundary conditions, we are interested in the interactions

involving the zero-mode gluon with the first and second KK gluons: G(2)G(1)G(0). These

can be derived from (5.8) and they are of the form

− Stopo =
3 ḡ3

3

24π2 L3/2

∫

Tr
[

G(2)G(1)dG(0)
]

×
{

(

f1(L)− f1(0)
) (

f2(L) + f2(0)
)

− 2

∫ L

0
dyf2(y) ∂yf

1(y)

}

, (5.9)

where again we have used a flat profile for the zero massless mode. Computing the coeffi-

cient explicitly for the (+,+) wave-functions results in

− Stopo ≃
3 g3

3

24π2

∫

Tr
[

G(2)G(1)dG(0)
]

(−3 k L) , (5.10)
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where g3 is already the 4D SU(3)c gauge coupling. There is also a quartic interaction

associated with this one by gauge invariance: G(2)G(1)G(0)G(0). Its coefficient is identical

to the one in (5.9) up to a factor of g3, and can be thought of as replacing the operator

in (5.9) by the gauge-invariant combination G(2)G(1)(dG(0 + g3G
(0)G(0)). For instance,

and as we will show in the next section, both these contributions must be present when

considering the process pp −→ G(1)G(2), not only because they are of the same order in

g3 but also by requiring gauge invariance. Although this process involves the second KK

mode of the gluon, the fact that it is relatively unsuppressed makes it of phenomenological

relevance. This is specially the case for Higgsless models, where the overall KK-mass scale

is considerably lower than in most other warped extra dimension scenarios. We will study

the discovery potential of this phenomenology in the next section.

Finally, considering generic quartic interactions for (+,+) KK gluons, there is always

a trace over four SU(3)c generators given by

Tr[ta tb tc td] =
−ifadedebc + ideadfbce + deaddebc − debddeac + decddeab

8

+
δadδbc − δacδbd + δabδcd

4Nc
. (5.11)

But since the Lorentz indexes are contracted with the totally anti-symmetric ǫ tensor, one

can at most have two identical KK modes in the interaction. As a consequence, there are

no interactions like G(0)G(0)G(0)G(0) and G(0)G(0)G(0)G(1).

Product gauge groups. Finally, we generalize to the case of product gauge groups.

Specifically, we consider a SU(3)c × U(1)Y gauge group and two fermions with charges

(3, Y ). We want to study the case when SU(3)c always has a massless mode corresponding

to the gluon. We then choose (+,+) boundary conditions for the SU(3)c gauge fields. We

are particularly interested in the coupling among two SU(3)c KK modes and one U(1)Y KK

mode. The contributions from the CS terms can be read off eq. (3.8), while the additional

non-local terms are introduced following the discussion at the beginning of this section.

The interaction with the lowest total KK number is

− Stopo =
3Y ḡ1 ḡ

2
3

24π2 L3/2

∫

Tr [B(0) dG(0)G(1)]

×
{∫ L

0
d y 2 f1

G(y) ∂5 f
0
B(y) + [f0

B(0) − f0
B(L)][f1

G(0) + f1
G(L)]

}

, (5.12)

where a constant value for f0
G(y) is used. Choosing (+,+) boundary conditions for the

U(1)Y gauge bosons, we also have f0
B(y) to be y independent. Then, we obtain

− Stopo =
3Y ḡ1 ḡ

2
3

24π2 L3/2

∫

d4xTr[B(0) dG(0) G(1)] × 0 (+,+) , (5.13)

reflecting the unbroken gauge symmetry. On the other hand, for (+,−) boundary condi-

tions for U(1)Y gauge bosons, the interaction is non-vanishing and is given by

− Stopo ≈
3Y ḡ1 ḡ

2
3

24π2 L3/2

∫

d4xTr3 [B(0) dG(0)G(1)] (2 −
√

2)
√
k L

=
3Y g1 g

2
3

24π2

∫

d4x
(2 −

√
2)

2

√
k L ǫµνρσ B(0)

µ ∂ν G
(0)
a,ρG

(1)
a,σ (+,−) , (5.14)
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for k L ≫ 1, where gi = ḡi/
√
L are the 4D gauge couplings. One can check that the

coefficient of the gauge-symmetry-violating operator, B(1) dG(0)G(0) actually vanishes.

For quartic gauge boson interactions, we restrict ourselves to interactions with a total

KK number below 2. This leaves only four possible interactions generated by the CS

terms: B(0)G(0)G(0)G(0), B(1)G(0)G(0)G(0), B(0)G(0)G(0)G(1). Again, we fix the boundary

conditions for SU(3)c to be (+,+). Independently of the boundary conditions for the

U(1)Y field, the coefficients of B(0)G(0)G(0)G(0) and B(1)G(0)G(0)G(0) vanish due to the

preserved gauge invariance of the zero-mode theory. On the other hand, the coefficient of

B(0)G(1)G(0)G(0) is given by the expression

− Stopo =
3Y ḡ1 ḡ

3
3

24π2 L2

∫

d4xTr3 [B(0)G(1)G(0)G(0)]

×
{
∫ L

0
d y 2 f1

G(y) ∂5 f
0
B(y) + [f0

B(0) − f0
B(L)][f1

G(0) + f1
G(L)]

}

, (5.15)

which has a coefficient identical to the one of B(0)dG(0)G(1) in eq. (5.12). Once again,

this is a consequence of the SU(3)c gauge symmetry. Adding Eq. (5.12) and eq. (5.15), we

obtain the SU(3)c gauge-invariant operator B(0)G(1) (dG(0) + g3G
(0)G(0)). Explicitly, the

quartic coupling coefficient is, for the (+,+) boundary conditions for the U(1)Y field

− Stopo =
3Y ḡ1 ḡ

3
3

24π2 L2

∫

d4xTr3 [B(0)G(1)G(0)G(0)] × 0 (+,+) , (5.16)

whereas for the (+,−) boundary conditions is given by

− Stopo ≈
3Y ḡ1 ḡ

3
3

24π2 L2

∫

d4xTr3 [B(0)G(1)G(0)G(0)] (2 −
√

2)
√
k L

=
3Y g1 g

3
3

24π2

∫

d4x
i (2 −

√
2)

4

√
k L ǫµνρσ fabcB(0)

µ G(1)
a,ν G

(0)
b,ρ G

(0)
c,σ (+,−) , (5.17)

We can easily obtain the coefficient for the interaction B(1)G(1)G(0)G(0) by replacing

f0
B with f1

B in eq. (5.15). Once again, for (+,+) boundary conditions for the U(1)Y
the coefficient of B(1) dG(0)G(1) vanishes, whereas for (+,−) boundary conditions, their

coefficients are non-zero.

To summarize, in order to have topological interactions among gauge bosons with

(+,+) boundary conditions one needs to include the 2nd-KK mode. This is generically the

case in the warped extra dimension models with gauge bosons and fermions propagating

in the bulk. The interactions of phenomenological interest with the lowest KK number

were derived from the master expression eq. (5.3), and are given by eq. (5.10) for the case

of Non-Abelian gauge groups. All interactions involving only the zero mode and first KK

mode with (++) boundary conditions vanish, as shown in eqs. (5.6) and (5.13). Since

the current constraints on the compactification scale are such that the 2nd-KK modes for

gauge bosons must have masses above ∼ 5TeV, we do not anticipate that the topological

interactions in this model can be discovered at the early stages of the LHC.

It is possible to evade the need for the 2nd-KK mode in warped extra dimension models

where at least one of the gauge fields has (+,−) boundary conditions. For the case of an
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Abelian gauge group this leads to a non-vanishing interactions involving two zero modes and

a KK mode as shown in eq. (5.7), whereas a similar expression for the case of SU(3)×U (1)Y
is shown in eq. (5.14). This boundary conditions are encountered, for instance, in Higgsless

models where the electroweak symmetry is broken in the IR brane by boundary conditions.

This leads to the appearance of non-vanishing topological interactions in these scenarios. As

an example in Higgsless models, there will be interactions involving the first KK-gluon with

a Z and a gluon, leading to potentially interesting new signals. Other interactions involving

only electroweak KK gauge bosons or zero modes are also generated. In the next section we

study the phenomenological implications of some of these novel interactions at the LHC.

6 Phenomenology of topological interactions

We are now in a position to study the phenomenological consequences of the remnant

topological interactions discussed above. We specifically consider three types of scenarios

with a warped extra dimension: Higgsless models, typical bulk warped models with a light

Higgs localized near the IR brane, and finally the model of ref. [20] with an implementation

of KK parity, which we show is broken by the remnant topological interactions. Since the

form of the topological interactions depends on the details of the zero-mode localization

in the 5D bulk, we will obtain them in the simplified picture where tR is completely IR-

localized, and all other zero modes, including tL, are localized on the UV brane. As shown

in section 3, in this setup only tL and tR contribute to the topological interactions. We

hope that this schematic approximation will give a good estimate of the correct answer.

In realistic warped extra dimension models both tR and tL are less localized, so we expect

that the top quark contribution to the topological interactions will be somewhat smaller.

On the other hand, we also neglect the b-quark contributions which could be comparable

if bL is far from the UV brane where bR is assumed to be localized. We will address the

corrections to these approximations in ref. [29], where we will present the most general

form of the topological interactions.

Although in general, as it was shown in sections 3 and 5, two KK modes are needed

if the gauge symmetry is unbroken. The breaking of the electroweak symmetry either by

boundary conditions or by a Higgs VEV allows for effective interactions not involving the

second KK mode. We also study the interactions involving a zero-mode gluon with the first

two KK modes, since it is present in all models and it has the largest possible coefficient

among the topological interactions. This is particularly important in Higgsless models,

where the overall KK-mass scale is smaller than in other cases.

6.1 Higgsless models

Here we study the topological interactions in Higgsless models. In the Higgsless scenario [32,

33], the gauge symmetry in the bulk is SU(2)L×SU(2)R×U(1)B−L with AL a
M , AR a

M and BM

as their gauge bosons. On the Planck brane, SU(2)R×U(1)B−L breaks down to U(1)Y hy-

percharge. On the TeV brane, SU(2)L × SU(2)R breaks to SU(2)D . So, the final unbroken

– 22 –



J
H
E
P
0
2
(
2
0
1
0
)
0
4
9

symmetry is only U(1)em. In this model, the W and Z gauge bosons have masses given by

M2
W =

k2 e−2 k L

k L
, M2

Z =
g2
5 + 2 g̃2

5

g2
5 + g̃2

5

k2 e−2 k L

k L
. (6.1)

Here, g5 is the gauge coupling of the two SU(2)’s and g̃5 is the gauge coupling of U(1)B−L.

The physical W gauge boson determines one combination of parameters: k and L. Up to

leading order in 1/(kL), the relation between the 5D and the 4D gauge couplings is

g2 =
g2
5

L
, g′2 =

g2
5 g̃

2
5

(g2
5 + g̃2

5)L
, e2 =

g2
5 g̃

2
5

(g2
5 + 2 g̃2

5)L
. (6.2)

The presence of the SU(2)R ensures that the ρ parameter is one at leading order in 1/(kL).

We first consider the topological interactions involving a Z, a gluon and a KK gluon.

These are originated by CS terms containing two 5D gluon fields and a U(1)B−L field.

These interactions are made possible in Higgsless models since the part of the Z that

comes from the U(1)Y gauge boson has a non-zero mode component. In this model, all the

three neutral gauge bosons: B, AL 3 and AR 3 contain the physical Z boson. The fraction

for the B gauge boson is approximately

f
(Z)
B (y) ≃ −

√

g2
5 + g̃2

5

g2
5 + 2g̃2

5

g5g̃5
g2
5 + g̃2

5

[

1 +
g2
5 + 2g̃2

5

g2
5 + g̃2

5

L− y
2L

e−2k(L−y)

]

, (6.3)

which is almost flat. This is because the Z boson is mainly contained in AL 3 and AR 3, one

linear combination of which has a “−” boundary condition on the IR brane. Substituting

f
(Z)
B (y) into eq. (5.12), we obtain the coefficient of the ZG(0)G(1) contribution

∫ L

0
d y 2 f1

G(y) ∂5 f
(Z)
B (y) + [f

(Z)
B (0) − f

(Z)
B (L)][f1

G(0) + f1
G(L)]

≈
√

g2
5 + 2g̃2

5

g2
5 + g̃2

5

g5g̃5
g2
5 + g̃2

5

1

5
√
kL

. (6.4)

In this way the full topological interaction has the form

− Stopo =
3Qsum g̃ g

2
3

24π2

∫

d4x

√

g2
5 + 2g̃2

5

g2
5 + g̃2

5

g5g̃5
g2
5 + g̃2

5

1

5
√
kL

ǫµνρσ 1

4
ZµG

(0)
a,νρG

(1)
a,σ

=
3Qsum e g

2
3

24π2

∫

d4x
cos θW

sin3 θW

1

5
√
kL

ǫµνρσ 1

4
ZµG

(0)
a,νρG

(1)
a,σ

≡ F
∫

d4x ǫµνρσ 1

2
ZµG

(0)
a,νρG

(1)
a,σ , (6.5)

where we have used the relation between 5D and 4D couplings, and Qsum adds all the

U(1)B−L charge contributions and depends on the choice of fermion representation in the

5D bulk. In order to give an estimate in a specific example, we choose the bulk fermions

to transform as QL = (tL, bL)T ∼ (3, 2, 1)1/6 and QR = (tR, b
′
R)T ∼ (3, 1, 2)1/6, resulting in

Qsum = (1/6+1/6) = 1/3. The mass of G(1) in this model is given by MG(1) ≈ x1 k e
−kL =
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G(1)
a,σ

= F ǫµνρσ kν

q

p

k

ga,ρ

Zµ = − i g3F ǫµνρσ fabc

gb,νZµ

G(1)
a,σ

gc,ρ

Figure 6. Feynman diagrams for triple and quartic gauge boson interactions from topological

interactions in the Higgsless model. The coefficient F is defined in eq. (6.5).

2.45
√
k LMW , which is approximately 1.2 TeV. From this action, we can read the Feynman

diagram for triple gauge boson and quartic gauge boson couplings. To estimate the size

of the effect we look first at the partial width for the newly induced decay channel for the

first KK-gluon via the topological interaction. Using the triple gauge boson coupling in

figure 6, the topological decay width of G(1) is given

Γ(G(1) → Z + g) =
1

96π

M3
G(1)

M2
Z

F2 = MG(1)

x2
1Q

2
sum αα

2
c

9600π2

cos4 θW

sin6 θW
≈ 10−7MG(1) . (6.6)

where the longitudinal enhancement of the Z somewhat compensates the 1/
√
kL suppres-

sion factor in the coupling. However, this partial width is still extremely small, implying

that the topological decay channel cannot compete with the fermionic decay modes, unless

all fermions have a flat profile and therefore have highly suppressed couplings to the first

KK-gluon. As a result, processes involving this interaction at the LHC such as pp→ G(1)Z,

have a very suppressed production cross section.

Also of interest is to compute the effects driven by the [SU(3)c]
3 CS term with the

lowest possible KK number. This corresponds to the G(0)G(1)G(2) interaction as discussed

in section 5. As discussed there, this interaction is the least suppressed one and is present

in all models. It is more relevant in Higgsless models since in them the KK-mass scale needs

to be lower than in more generic warped extra dimension theories. Therefore, the presence

of the second KK gluon in the interaction may not necessarily preclude its observation at

the LHC. From the triple interaction in eq. (5.10) we obtain the Feynman rule depicted in

figure 7, with the coefficient defined as

C3G =
g3
3

8π2
Nf

3

4
kL , (6.7)

where Nf is the number of chiral colored fermions contributing to the appropriate CS

term. In our case, Nf = 2, since there are two left-handed anomalies associated with the

QR multiplet. The coupling is large enough that it results in a non-negligible contribution
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G
(1)
b,ν

= C3G fabc ǫµναβ kα

k

G(2)
a,µ

G
(0)
c,β

Figure 7. Feynman diagram for the triple interaction G(0)G(1)G(2). The coefficient C3G is defined

in (6.7).

to the G(2) decay width. This is given by

Γ(G(2) → G(1) + g) =
C2

3G

32π

(

M2
G(2) + M2

G(1)

)(

M2
G(2) − M2

G(1)

)3

M2
G(1) M

5
G(2)

,

=
9α3

c N
2
f k

2 L2

512π

(

x2
2 + x2

1

) (

x2
2 − x2

1

)3

x2
1 x

2
2

MG(2) , (6.8)

with x1 ≈ 2.45 and x2 ≈ 5.56, obtained from the roots of Bessel functions. For instance,

for MG(1) = 1.2 TeV, corresponding to MG(2) = 2.7 TeV, evaluating αs(MG(2)), for Nf = 2

and kL ≈ 37.5, we have

Γ(G(2) → G(1) + g) ≈ 0.02MG(2) . (6.9)

Thus, we see that this decay mode of the second KK mode of the gluon induced by topo-

logical interactions is significant, due to the enhancement from the large wave-function

overlapping factor k L ∼ 35. We can compare this decay channel of G(2) with its decays

to fermions. Although these are more model dependent, we can estimate them by making

use of the dominant fermion decay channel, G(2) → tRt̄R, since tR is the most IR-localized

zero-mode quark. Assuming a value for the bulk mass parameter ctR large enough to be

consistent with our approximate calculations for the topological interactions, the branch-

ing fraction into G(1)g is of the order of a few percent. For instance, for ctR ≃ 3 we have

Br(G(2) → G(1) + g) ≃ 0.04. The coupling G(0)G(1)G(2) is also large enough so as to make

it interesting to estimate the cross section for pp → G(1)G(2) induced by this interaction.

Given that the invariant mass of these events are larger than 1 TeV, it is enough to use

qq̄ → G(1)G(2) to estimate this cross section, since the quark parton distribution functions

are dominant in this energy regime. We obtain

σ(qq̄ → G(1)G(2)) =
C2

3G g
2
3

72π ŝ3M2
G(1) M

2
G(2)

√

(ŝ + M2
G(1) − M2

G(2))
2 − 4 ŝM2

G(1) (6.10)

×
[

M2
G(1)(8ŝM

2
G(2) −M4

G(2) + ŝ2)−M4
G(1)(M

2
G(2) + 2ŝ) +M6

G(1) + (M3
G(2) − ŝMG(2))2

]

,

which, for MG(1) = 1.2 TeV results in σ(pp → G(1)G(2)) ≃ 1 fb. We show the production

cross section at LHC for two different center of mass energies in figure 8, as a function

of the mass of the first KK gluon. We can see that for MG(1) masses consistent with
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Figure 8. The production cross section of pp → G(1) + G(2) as a function of the first KK gluon

mass at the LHC, for
√
s = 14 and 10 TeV. Only the qq̄ contributions are taken into account. This

result applies to all warped extra dimension models as long as SU(3)c is a bulk gauge symmetry

and is independent of the details of the fermion sector.

Higgsless models, a production cross section of several fb can be obtained at the LHC with√
s = 14 TeV. For the heavier masses typically required in warped extra dimension models

with a light Higgs, the cross section drops considerably below 0.1 fb, making its observation

at the LHC very challenging. We emphasize that these interactions are present in all

warped extra dimension models, and their strength is very model-independent. However,

the presence of the second KK gluon makes them only relevant in Higgsless models, since

the higher KK-mass scale in other scenarios makes its production cross section too small

for early observation at the LHC.

6.2 The standard warped extra dimension model

In this section, we address the traditional warped extra dimension scenarios, which typ-

ically have an IR-localized light Higgs. The gauge symmetry in the bulk is SU(2)L ×
SU(2)R×U(1)X , with the gauge bosons having (+,+) boundary conditions. Choosing the

same gauge coupling for SU(2)L and SU(2)R as gL and the gauge coupling for U(1)X as

gX , we have

g′ =
gX gL

√

g2
L + g2

X

, e =
gL g

′
√

g′2 + g2
L

, or gX =
e g′

√

2 e2 − g′2
, gL =

e g′
√

g′2 − e2
. (6.11)

The first topological interaction involving two KK modes is X(2)G(0)G(1). Substituting

f
(2)
X (y) into eq. (5.12), we have the wave-function overlapping part as

∫ L

0
d y 2 f1

G(y) ∂5 f
2
X(y) + [f2

X(0) − f2
X(L)][f1

G(0) + f1
G(L)] ≈ − 3.0 k L . (6.12)

After electroweak symmetry breaking, the physical Z boson mainly contains zero modes

with a small fraction in the higher KK-modes. The mixing angle between the Z boson and
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X(2) can be written as [34]

sin θ02X ≈ −
M2

Z

M2
X(2)

√

2 cos2 θW − 1
√
k L . (6.13)

HereMX(2) ≈ 5.57 k e−k L ≈ 2.3MG(1) . ForMG(1) = 2TeV and kL = 34, we have sin θ02X ≈
0.0024. Similar to the Higgsless model, we have FRS given by

FRS =
3Qsum gX g2

3

24π2

(−3.0) k L

2
sin θ02X =

3Qsum e g
2
3

24π2

3.0 k L
√
k L

2

M2
Z

2.32M2
G(1)

. (6.14)

The topological decay width of G(1) in this model is

Γ(G(1) → Z + g) =
1

96π

M3
G(1)

M2
Z

F2
RS = MG(1)

0.08Q2
sum αα2

c (kL)3M2
Z

96π2M2
G(1)

≈ 2× 10−7MG(1) , (6.15)

for Qsum = 1, kL = 34 and MG(1) = 2 TeV. Thus, we conclude that in warped extra dimen-

sion scenarios with an IR-localized Higgs these topological interactions are very suppressed,

implying that their observation at colliders would require luminosities larger than the ones

to be achieved at the LHC. Although the interaction gG(1)G(2) is also present in this model,

unlike in Higgsless models in the previous section its effects are highly suppressed by the

fact that the G(2) mass exceeds 5 TeV, pushing the associated production of G(1) and G(2)

out of the reach of the LHC even though the couplings are unsuppressed.

6.3 The warped extra dimension model with KK parity

As a last phenomenological application, we consider the consequences of topological inter-

actions in a warped extra dimension model with KK parity, as proposed in ref. [20]. In

these model, KK parity conservation results in the stability of the lightest KK-odd par-

ticle making it an interesting candidate for dark matter. We examine the effects of the

topological interactions on KK parity, and therefore on the stability of the lightest KK-odd

particle. We will show that KK parity survives the presence of the topological interactions

obtained by integrating heavy fermions. Since the way this comes about is non-trivial, and

is in contrast to what happens in the Little Higgs models with T parity [12, 13], where the

symmetry is broken by the topological interactions, the proof warrants a fair amount of

detail. Here we study the gravitationally stable model of ref. [20], which puts the UV brane

at the fixed point of a Z2 reflection in the compact dimension. Thus, with the extra dimen-

sion defined in the interval y ∈ [−L,L], the UV brane is at the origin, and there are two

IR branes at −L and L. The warp factor is symmetric under a Z2 reflection. The doubling

of the physical space implies the existence of twice the KK modes, which are now even or

odd under the Z2 reflection symmetry. If the Z2 symmetry is preserved, so is KK parity.

In order to study the presence of topological interactions in these models, we first de-

construct this IR-UV-IR model. For the purpose of discussing the topological interactions,

we will not consider brane-localized terms, which are only introduced in order to separate

the masses of KK-even and KK-odd gauge bosons. This simplification does not affect our

– 27 –



J
H
E
P
0
2
(
2
0
1
0
)
0
4
9

U1

ψL,−N

ψ̄R,−N+1

ψL,−N+1 ψL,−1

ψ̄R,−1 ψ̄R,0

ψL,1

ψ̄R,1

ψL,N−1

ψ̄R,N−1

ψL,N

U−1U−N UN

−N
U(1) U(1) U(1) U(1) U(1) U(1)

0 1 N

U(1)

−1 N − 1−N + 1

χ̄R,−N χ̄R,−N+1

χL,−N+1 χL,−1

χ̄R,−1

χL,0 χL,1

χ̄R,1

χL,N−1

χ̄R,N−1 χ̄R,N

U−N U−1 U1 UN

U(1)

−N
U(1)

N − 1−N + 1 −1

U(1)

0
U(1)U(1)

1
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Figure 9. Deconstruction of the warped extra dimension with KK parity. The moose diagram in

the upper panel results in a left-handed zero mode, where from left to right the site number goes from

−N to N . We remove the left-handed mode in the zeroth site and two right-handed modes in the

−N -th and N -th sites. A similar diagram is shown in the lower panel to obtain a right-handed zero

mode. The anomalies are canceled in each site. The deconstruction is manifestly Z2-symmetric.

results. The moose diagrams corresponding to this model are shown in figure 9, where the

link field is Uj and the fermion site masses are µj with j = −N,−N+1, . . . , 0, . . . N−1, N .

For fermions providing a massless left-handed zero mode (the upper panel of figure 9),

KK-parity is defined in the continuum theory as y → −y with ψL,R → γ5 ψL,R. In the de-

constructed theory, it becomes ψj,L → −ψ−j,L and ψj,R → ψ−j,R. To preserve KK-parity,

we then require the following conditions: U−j = −Uj and µ−j = −µj, with 〈Uj〉 = v qj/
√

2

and µj = −g v qcL+j−1/2 as in eq. (2.29). Defining ψ±
L,j ≡ (ψL,j±ψL,−j)/

√
2, ψ±

R,j ≡ (ψR,j∓
ψR,−j)/

√
2 and ψ−

R,0 = ψR,0, we have N KK-even left-handed modes ψ+
L,j=1,2,...,N , (N − 1)

KK-even right-handed modes ψ+
R,j=1,2 ...,N−1, N KK-odd left-handed modes ψ−

L,j=1,2,...,N

and N KK-odd right-handed modes ψ−
R,j=0,1,...,N−1. Therefore, there is one massless KK-

even left-handed zero mode. Following the discussions of section 2.2, it can be checked that

the equations of motion, spectra and wave-functions of fermions indeed match the results

in the continuum theory of ref. [20]. For the lower panel, which provides a massless right-

handed zero mode, one can also match the continuum results with µj = −g v q−cR+j−1/2

and χ±
L,j ≡ (χL,j ∓ χL,−j)/

√
2 and χ±

R,j ≡ (χR,j ± χR,−j)/
√

2. In table. 2 we show the

different limits leading to extreme localizations of the zero modes on one of the branes.

We want to consider the case with the two chiral zero modes localized at different

extremes of the extra dimension in the continuum theory. In particular, just as we did

earlier in this section, we consider the situation with an IR-localized right-handed zero

mode and a UV-localized left-handed zero mode. As shown in table 2 and previously

discussed in section 2.2, in order to obtain such situation we take the limits µj ≪ vj for the

– 28 –



J
H
E
P
0
2
(
2
0
1
0
)
0
4
9

left-handed fermion right-handed fermion

cL ≫ 1
2 (UV) ↔ µj

vj
→ 0 cR ≫ −1

2 (IR) ↔ µj

vj
→∞

cL ≪ 1
2 (IR) ↔ µj

vj
→∞ cR ≪ −1

2 (UV) ↔ µj

vj
→ 0

Table 2. Matching of the continuum warped extra dimension model with KK parity and the

discretized theory for different limits.

IRUV

χ
+ (0)
R

−SCS

IR

SCS

χ
+ (0)
R

ψ
+ (0)
L

−1
2 Snon-local

1
2
Snon-local

1
2 Snon-local−1

2 Snon-local

Figure 10. The topological interactions in the warped extra dimension model with KK parity.

The nonzero topological interaction is even under KK parity.

deconstruction with a left-handed zero-mode, and µj ≫ vj for the one with a right-handed

zero-mode. Integrating out the heavy fermions, results in a summation of WZW terms

coming from the ψ KK-modes. We are also left with two left-handed modes around the

zeroth site: ψ+
L,0 and χ−

L,0; and two right-handed modes: χR,−N on the −N -th site and χR,N

on the N ’s site. The KK-parity odd combination (χR,N − χR,−N )/
√

2 gets a Dirac mass

with χ−
L,0. In the end, after integrating out all heavy fermions we have one massless left-

handed mode localized on the zeroth site and one massless right-handed mode distributed

equally on the −N -th site and the N -th site, in addition to the WZW terms. Then,

when going to the continuum limit we have a theory with massless chiral fermions and KK

gauge bosons, with topological interactions among them. These include the local CS terms

resulting from integrating out the ψ KK tower, as well as the non-local terms induced by

the triangle diagrams with the zero modes and the odd KK modes. This is illustrated

in figure 10: the upper non-local interactions are from triangular contributions from the

massless fermion zero modes. The lower non-local interactions come from integrating out

the χ−
L,0 and (χR,N −χR,−N )/

√
2. Summing all topological interactions and in the unitary
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gauge, we arrive at the following gauge invariant action

− Stopo =
Q3

24π2

∫

ǫ(y)AdAdA +
Q3

24π2

∫

d4x [A(0) dA(0)A(L) − A(L) dA(L)A(0)]

+
Q3

24π2

∫

d4x [A(0) dA(0)A(−L) − A(−L) dA(−L)A(0)] , (6.16)

with the function ǫ(y) = 1 for y > 0 and −1 for y < 0. Thus we see that the resulting non-

vanishing topological interactions are even under the Z2 transformation y → −y. Therefore,

KK parity is still a good symmetry in this model. As a consequence, the potential dark

matter candidate proposed in ref. [20] would remain stable if the only topological interac-

tions present are those generated by integrating out the fermion spectrum as shown above.

Although the Z2 symmetry in this model can remain unbroken, its origin does not

appear to be associated with the symmetry of an orbifold geometry as it is in Universal

Extra Dimensions (UED) [35]. In the UED case the Z2 symmetry is purely geometric, and

is defined about the middle point of the orbifold which does not play a dynamical role.

Here, the symmetry is obtained by attaching two identical orbifolds at the UV brane. This

amounts to making an assumption about the dynamics of the middle point where the UV

brane is located, and appears to be similar to imposing an ad hoc matter parity as is done

in other models.

7 Conclusions

Extra dimensional theories with chiral zero modes are rendered non-anomalous by the

addition of bulk Chern-Simons terms. Using deconstruction methods we have shown that

these terms not only cancel the localized anomalies but also lead to remnant interactions

among gauge KK and zero modes. In a purely four-dimensional interpretation, they involve

the vector mesons of a global symmetry which is partially gauged. We derived our results in

the limits of extreme fermion localization, which in the deconstructed language corresponds

to taking the ratio of fermion masses to link VEVs, µj/vj , either to 0 or to infinity. These

simplifying assumptions allowed us to obtain the remnant topological interactions in a

closed form in the continuum limit. However, it is clear from our derivation that their

presence is a generic feature of these theories. We can also conclude from this simplified

treatment that the topological interactions will depend on the zero-mode fermion bulk

profile, as attested by the fact that when both chiralities are localized on the same brane

there are none, whereas if the chiral zero-modes are localized at opposite ends of the

orbifold they are present. The more generic case, for finite values of µj/vj corresponding

to zero-mode fermions with bulk profiles, does not lend itself to a simple form in the

continuum limit, and it will be presented elsewhere [29]. Here, we used our simplified

result to approximate the most important contribution to these terms in warped extra

dimension models, which comes from the zero-mode top quark. We consider the effects

as coming from an IR-localized t
(0)
R , and a UV-localized t

(0)
L , assuming that all other zero

modes are UV-localized. This approximation should give a reasonable estimate of the

effects in more realistic models of zero-mode localization. Even then, we must notice that
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the answer still is dependent of details of the fermion content of the model, such as the

embedding of fermions in the 5D bulk. Such was the case when computing the strength

of the interactions in section 6 leading to G(2)G(1)g and G(1)Zg processes. A different

embedding for the right-handed multiplets in the bulk would have led to different values

of Qsum and Nf in (6.5) and (6.7) respectively.

In the deconstruction description we showed how for two-site models there are no

remnant interactions, whereas already in the three-site models these are present. In the

continuum limit, this manifest itself in the fact that for the remnant interactions to be

non-zero the minimum interaction must involve a zero mode, plus first and second KK

modes, as shown in section 5.

The remnant topological interactions lead to novel physical processes. We have shown

how to derive these for constructions involving Abelian, Non-Abelian as well as product

gauge groups relevant in various model-building scenarios in warped extra dimensions. In

particular, we considered the interaction involving the first and second KK modes of the

gluon with the gluon zero mode, G(2)G(1)g, deriving from the CS terms that cancel the

[SU(3)c]
3 anomaly. This is the most un-suppressed topological interaction in warped extra

dimension models, due both to the largest possible product of gauge couplings as well as

to the enhancement of the wave-function overlap among KK modes. The strength of this

interaction is large enough to make it a visible decay mode of the G(2) for the choice of

parameters used here, corresponding to a UV-localized t
(0)
L and an IR-localized t

(0)
R . We

also used this interaction to estimate the cross section for pp→ G(1)G(2), plotted in figure 8

as a function of MG(1) . This interaction is present in all warped extra dimension models

and does not depend on the details of electroweak symmetry breaking. On the other hand,

as we can see from figure 8, the cross section is large enough to be observed at the LHC

only for models with MG(1) not far above 1 TeV, as it is the case in Higgsless models. This

implies that in Higgsless models the process pp → G(1)G(2) induced by the topological

interaction G(2)G(1)g can be observed at the LHC. The final state would consist of four

top quarks and a hard gluon jet, with two of the top quarks and the jet reconstructing to

MG(2) and the other two top quarks reconstructing to MG(1) .

Many other processes are induced by the topological interactions. As examples, we

considered the topological interactions induced by the [SU(3)c]
2 U(1)Y CS terms leading to

the gZG(1) vertex. We study the phenomenology of such a unique interaction for different

choices of boundary conditions relevant for warped models with or without a Higgs in

section 6. We conclude that these coupling are too small to be observable at the LHC,

unless the couplings of G(1) to zero-mode fermions are highly suppressed.

Finally, we have also studied the warped extra dimension model with KK parity, as

proposed in ref. [20]. We showed that, unlike in the case of Little Higgs theories with

T parity, the remnant topological interactions generated by integrating out KK fermions

do not break KK parity. Thus, and as long as it is assumed that the 5D theory has no

Chern-Simons terms, the lightest KK-odd particle remains stable.

Other processes can be easily derived by following the procedure presented in section 5.

For instance, the [SU(3)c]
2 U(1)Y CS terms also induce the vertex G(1)Z(1)g. Although

its coupling is smaller than that of G(2)G(1)g, the fact that it does not involve a sec-
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ond KK mode may result in a phenomenologically relevant mechanism for pp → G(1)Z(1)

production. Also potentially interesting are purely electroweak interactions coming from

[SU(2)]2 U(1) CS terms, resulting in couplings such as Z(1)Z(0)Z(0), which in Higgsless

models are not suppressed by wave-function factors.

Among the processes we have not considered are those involving gravitons and their

KK modes, generated by the cancellation of gravitational anomalies. To obtain these would

require the deconstruction of gravity [36] in a warped extra dimension theory, an interesting

problem in and on itself regardless of its phenomenological applications. Finally, we have

not made an exhaustive study of the topological interactions in all warped extra dimension

scenarios. For instance, it would be interesting to consider the form of these interactions

in Gauge-Higgs unification models [37].

In sum, the observation of topological interactions as the ones studied here would

point to fundamental aspects of the physics underlying the discoveries of new massive

gauge bosons at the LHC. We hope that this work can be the basis for more detailed

phenomenological studies of the collider signals of these topological terms.
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