16,448 research outputs found

    Effect of arm movement and task difficulty level on balance performance in healthy children:are there sex differences?

    Get PDF
    OBJECTIVE: In children, studies have shown that balance performance is worse in boys compared to girls and further studies revealed inferior performance when arm movement was restricted during balance assessment. However, it remains unclear whether restriction of arm movement during balance testing differentially affects children’s balance performance (i.e., boys more than girls). Thus, we compared the influence of arm movement on balance performance in healthy boys versus girls (mean age: ~ 11.5 years) while performing balance tasks with various difficulty level. RESULTS: In nearly all tests, balance performance (i.e., timed one-legged stance, 3-m beam walking backward step number, Lower Quarter Y-Balance test reach distance) was significantly worse during restricted compared to free arm movement but without any differences between sexes or varying levels of task difficulty. These findings indicated that balance performance is negatively affected by restriction of arm movement, but this does not seem to be additionally influenced by children’s sex and the level of task difficulty

    Effect of arm movement on balance performance in children: role of expertise in gymnastics

    Get PDF
    OBJECTIVE: Studies have shown that balance performance is better in gymnasts compared to age-/sex-matched controls and further studies revealed superior performance when arms were free to move during assessment of balance. However, it is unknown whether free arm movement during balance testing differentially affects balance performance with respect to sports expertise (i.e., gymnasts are less affected than age-/sex-matched controls). Therefore, we investigated the effect of arm movement on balance performance in young female gymnasts compared to age-/sex-matched controls while performing balance tasks with various difficulty levels. RESULTS: In both samples, balance performance (except for the timed one-legged stance) was significantly better during free compared to restricted arm movement conditions and this was especially observed in the highest task difficulty condition of the 3-m beam walking backward test. These findings revealed that balance performance is positively affected by free arm movements, but this does not seem to be additionally influenced by the achieved expertise level in young gymnasts

    The use of clamping grips and friction pads by tree frogs for climbing curved surfaces

    Get PDF
    Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nanopillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces

    Comparing CEO Employment Contract Provisions: Differences Between Australia and the United States

    Get PDF
    This study compares CEO employment contracts across two common law countries: the United States and Australia. Although the regulatory regimes of these jurisdictions enjoy many comparable features, there are also some important institutional differences in terms of capital market, tax, and regulatory structures, which are discussed here. Debate has raged in the United States on the issue of whether executive compensation is efficient and determined at arm\u27s length, or skewed by a power imbalance between managers and shareholders. A comparative analysis of the kind undertaken in our study provides an additional perspective on the optimal contracting and managerial power models of executive pay in U.S. academic literature. Even if one model has greater explanatory power in the U.S. context, this will not necessarily be the case in other jurisdictions, such as Australia. In order to do our comparison, we create pairs of U.S. and Australian firms that are matched on a number of dimensions including firm size and industry. We find that Australian CEOs have significantly greater base salaries than their U.S. counterparts, while U.S. CEOs are more likely to be compensated with restricted stock and stock options than the Australian CEOs. More striking is the fact that U.S. CEO employment contracts tend to last longer than Australian contracts, and they are more likely to have arbitration provisions, change-in-control provisions, tax gross ups, do-not-compete clauses, and supplemental executive retirement plans. We also find that Australian contracts are much more apt to include performance hurdle requirements before CEOs can receive restricted stock and options, and restrictions on CEO hedging of restricted stock and options. A number of the contractual differences we document appear to be consistent with key institutional differences between the two countries

    Measurements of the Diffuse Ultraviolet Background and the Terrestrial Airglow with the Space Telescope Imaging Spectrograph

    Get PDF
    Far-UV observations in and near the Hubble Deep Fields demonstrate that the Space Telescope Imaging Spectrograph (STIS) can potentially obtain unique and precise measurements of the diffuse far-ultraviolet background. Although STIS is not the ideal instrument for such measurements, high-resolution images allow Galactic and extragalactic objects to be masked to very faint magnitudes, thus ensuring a measurement of the truly diffuse UV signal. The programs we have analyzed were not designed for this scientific purpose, but would be sufficient to obtain a very sensitive measurement if it were not for a weak but larger-than-expected signal from airglow in the STIS 1450-1900 A bandpass. Our analysis shows that STIS far-UV crystal quartz observations taken near the limb during orbital day can detect a faint airglow signal, most likely from NI\1493, that is comparable to the dark rate and inseparable from the far-UV background. Discarding all but the night data from these datasets gives a diffuse far-ultraviolet background measurement of 501 +/- 103 ph/cm2/sec/ster/A, along a line of sight with very low Galactic neutral hydrogen column (N_HI = 1.5E20 cm-2) and extinction (E(B-V)=0.01 mag). This result is in good agreement with earlier measurements of the far-UV background, and should not include any significant contribution from airglow. We present our findings as a warning to other groups who may use the STIS far-UV camera to observe faint extended targets, and to demonstrate how this measurement may be properly obtained with STIS.Comment: 7 pages, Latex. 4 figures. Uses corrected version of emulateapj.sty and apjfonts.sty (included). Accepted for publication in A

    Temperature dependent d-d excitations in manganites probed by resonant inelastic x-ray scattering

    Full text link
    We report the observation of temperature dependent electronic excitations in various manganites utilizing resonant inelastic x-ray scattering (RIXS) at the Mn K-edge. Excitations were observed between 1.5 and 16 eV with temperature dependence found as high as 10 eV. The change in spectral weight between 1.5 and 5 eV was found to be related to the magnetic order and independent of the conductivity. On the basis of LDA+U and Wannier function calculations, this dependence is associated with intersite d-d excitations. Finally, the connection between the RIXS cross-section and the loss function is addressed.Comment: 5 pages, 5 figure

    Time-course of balance training-related changes on static and dynamic balance performance in healthy children

    Get PDF
    Objective: In healthy children, there is evidence of improvements in static and dynamic balance performance following balance training. However, the time-course of balance training-related changes is unknown. Thus, we determined the effects of balance training after one, three, and six weeks of exercise on measures of static and dynamic balance in healthy children (N = 44, 20 females, mean age: 9.6 ± 0.5 years, age range: 9–11 years). Results: Participants in the intervention group (2 × 25 min balance exercises per week) compared to those in the control group (2 × 25 min track and field exercises and soccer practice per week) significantly improved their static (i.e., by measuring stance time in the One-Legged Stance test) and dynamic (i.e., by counting step number in the 3-m Beam Walking Backward test) balance performance. Late effects (after 6 weeks) occurred most frequently followed by mid-term effects (after 3 weeks) and then early effects (after 1 week). These findings imply that balance training is effective to improve static and dynamic measures of balance in healthy children, whereby the effectiveness increases with increasing training period. Trial registration: Current Controlled Trials ISRCTN16518737 (retrospectively registered at 24th August, 2023)

    Soft-Collinear Messengers: A New Mode in Soft-Collinear Effective Theory

    Full text link
    It is argued that soft-collinear effective theory for processes involving both soft and collinear partons, such as exclusive B-meson decays, should include a new mode in addition to soft and collinear fields. These "soft-collinear messengers" can interact with both soft and collinear particles without taking them far off-shell. They thus can communicate between the soft and collinear sectors of the theory. The relevance of the new mode is demonstrated with an explicit example, and the formalism incorporating the corresponding quark and gluon fields into the effective Lagrangian is developed.Comment: 22 pages, 5 figures. Extended Section 6, clarifying the relevance of different types of soft-collinear interaction

    Improving prostate cancer detection in veterans through the development of a clinical decision rule for prostate biopsy

    Get PDF
    BACKGROUND: We sought to improve prostate cancer (PC) detection through developing a prostate biopsy clinical decision rule (PBCDR), based on an elevated PSA and laboratory biomarkers. This decision rule could be used after initial PC screening, providing the patient and clinician information to consider prior to biopsy. METHODS: This case–control study evaluated men from the Tampa, Florida, James A. Haley (JH) Veteran’s Administration (VA) (N = 1,378), from January 1, 1998, through April 15, 2005. To assess the PBCDR we did all of the following: 1) Identified biomarkers that are related to PC and have the capability of improving the efficiency of PC screening; 2) Developed statistical models to determine which can best predict the probability of PC; 3) Compared each potential model to PSA alone using Receiver Operator Characteristic (ROC) curves, to evaluate for improved overall effectiveness in PC detection and reduction in (negative) biopsies; and 4) Evaluated dose–response relationships between specified lab biomarkers (surrogates for extra-prostatic disease development) and PC progression. RESULTS: The following biomarkers were related to PC: hemoglobin (HGB) (OR = 1.42 95% CI 1.27, 1.59); red blood cell (RBC) count (OR = 2.52 95% CI 1.67, 3.78); PSA (OR = 1.04 95% CI 1.03, 1.05); and, creatinine (OR = 1.55 95% CI 1.12, 2.15). Comparing all PC stages versus non-cancerous conditions, the ROC curve area under the curve (AUC) enlarged (increasing the probability of correctly classifying PC): PSA (alone) 0.59 (95% CI 0.55, 0.61); PBCDR model 0.68 (95% CI 0.65, 0.71), and the positive predictive value (PPV) increased: PSA 44.7%; PBCDR model 61.8%. Comparing PC (stages II, III, IV) vs. other, the ROC AUC increased: PSA (alone) 0.63 (95% CI 0.58, 0.66); PBCDR model 0.72 (95% CI 0.68, 0.75), and the PPV increased: 20.6% (PSA); PBCDR model 55.3%. CONCLUSIONS: These results suggest evaluating certain common biomarkers in conjunction with PSA may improve PC prediction prior to biopsy. Moreover, these biomarkers may be more helpful in detecting clinically relevant PC. Follow-up studies should begin with replicating the study on different U.S. VA patients involving multiple practices
    • …
    corecore