660 research outputs found

    Shapes and fissility of highly charged and rapidly rotating levitated liquid drops

    Get PDF
    We use diamagnetic levitation to investigate the shapes and the stability of free electrically charged and spinning liquid drops of volume ∼1 ml. In addition to binary fission and Taylor cone-jet fission modes observed at low and high charge density, respectively, we also observe an unusual mode which appears to be a hybrid of the two. Measurements of the angular momentum required to fission a charged drop show that nonrotating drops become unstable to fission at the amount of charge predicted by Lord Rayleigh. This result is in contrast to the observations of most previous experiments on fissioning charged drops, which typically exhibit fission well below Rayleigh’s limit

    Rotating Rayleigh-Taylor instability

    Get PDF
    The effect of rotation upon the classical Rayleigh-Taylor instability is considered. We consider a two-layer system with an axis of rotation that is perpendicular to the interface between the layers. In general we find that a wave mode’s growth rate may be reduced by rotation. We further show that in some cases, unstable axisymmetric wave modes may be stabilized by rotating the system above a critical rotation rate associated with the mode’s wavelength, the Atwood number and the flow’s aspect ratio

    Centrifugally forced Rayleigh-Taylor instability

    Get PDF
    We consider the effect of high rotation rates on two liquid layers that initially form concentric cylinders, centred on the axis of rotation. The configuration may be thought of as a fluid-fluid centrifuge. There are two types of perturbation to the interface that may be considered, an azimuthal perturbation around the circumference of the interface and a varicose perturbation in the axial direction along the length of the interface. It is the first of these types of perturbation that we consider here, and so the flow may be considered essentially two-dimensional, taking place in a circular domain. A linear stability analysis is carried out on a perturbation to the hydrostatic background state and a fourth order Orr-Sommerfeld-like equation that governs the system is derived. We consider the dynamics of systems of stable and unstable configurations, inviscid and viscous fluids, immiscible fluid layers with surface tension, and miscible fluid layers that may have some initial diffusion of density. In the most simple case of two layers of inviscid fluid separated by a sharp interface with no surface tension acting, we show that the effects of the curvature of the interface and the confinement of the system may be characterized by a modified Atwood number. The classical Atwood number is recovered in the limit of high azimuthal wavenumber, or the outer fluid layer being unconfined. Theoretical predictions are compared with numerical experiments and the agreement is shown to be good. We do not restrict our analysis to equal volume fluid layers and so our results also have applications in coating and lubrication problems in rapidly rotating systems and machinery

    Magnetically Induced Rotating Rayleigh-Taylor Instability

    Get PDF
    Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses, rocketry or linear electric motors to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authors have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally-stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10^6 — 10^5, compared to a ferrofluid. The dominant effect of the magnetic field is to apply a body force to each fluid layer changing the liquid’s effective weight. The upper layer is weakly paramagnetic and the lower layer is weakly diamagnetic so that as the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted toward the magnet. The upper layer behaves as if it is heavier than it really is, and the lower layer behaves as if it is lighter than it really is. If the applied gradient magnetic field is large enough, the upper layer may become “heavier” than the lower layer and so the system becomes Rayleigh-Taylor unstable. and we see the onset of the Rayleigh-Taylor instability. We further observe that increasing the dynamic viscosity of fluid in each layer increases the observed lengthscale of the instability

    Magnetically-induced rotating Rayleigh-Taylor instability

    Get PDF
    Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses, rocketry or linear electric motors to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authors have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally-stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10^6 — 10^5, compared to a ferrofluid. The dominant effect of the magnetic field is to apply a body force to each fluid layer changing the liquid’s effective weight. The upper layer is weakly paramagnetic and the lower layer is weakly diamagnetic so that as the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted toward the magnet. The upper layer behaves as if it is heavier than it really is, and the lower layer behaves as if it is lighter than it really is. If the applied gradient magnetic field is large enough, the upper layer may become “heavier” than the lower layer and so the system becomes Rayleigh-Taylor unstable. and we see the onset of the Rayleigh-Taylor instability. We further observe that increasing the dynamic viscosity of fluid in each layer increases the observed lengthscale of the instability

    Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings

    Get PDF
    Background: Cell growth and cell proliferation are intimately linked in the presence of Earth’s gravity, but are decoupled under the microgravity conditions present in orbiting spacecraft. New technologies to simulate microgravity conditions for long-duration experiments, with stable environmental conditions, in Earth-based laboratories are required to further our understanding of the effect of extraterrestrial conditions on the growth, development and health of living matter. Results: We studied the response of transgenic seedlings of Arabidopsis thaliana, containing either the CycB1-GUS proliferation marker or the DR5-GUS auxin-mediated growth marker, to diamagnetic levitation in the bore of a superconducting solenoid magnet. As a control, a second set of seedlings were exposed to a strong magnetic field, but not to levitation forces. A third set was exposed to a strong field and simulated hypergravity (2 g). Cell proliferation and cell growth cytological parameters were measured for each set of seedlings. Nucleolin immunodetection was used as a marker of cell growth. Collectively, the data indicate that these two fundamental cellular processes are decoupled in root meristems, as in microgravity: cell proliferation was enhanced whereas cell growth markers were depleted. These results also demonstrated delocalisation of auxin signalling in the root tip despite the fact that levitation of the seedling as a whole does not prevent the sedimentation of statoliths in the root cells. Conclusions:In our model system, we found that diamagnetic levitation led to changes that are very similar to those caused by real- [e.g. on board the International Space Station (ISS)] or mechanically-simulated microgravity [e.g. using a Random Positioning Machine (RPM)]. These changes decoupled meristematic cell proliferation from ribosome biogenesis, and altered auxin polar transport

    High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire

    Get PDF
    The discovery of graphene and its remarkable electronic properties has provided scientists with a revolutionary material system for electronics and optoelectronics. Here, the authors investigate molecular beam epitaxy (MBE) as a growth method for graphene layers. The standard dual chamber GENxplor has been specially modified by Veeco to achieve growth temperatures of up to 1850 _C in ultrahigh vacuum conditions and is capable of growth on substrates of up to 3 in. in diameter. To calibrate the growth temperatures, the authors have formed graphene on the Si-face of SiC by heating wafers to temperatures up to 1400 _C and above. To demonstrate the scalability, the authors have formed graphene on SiC substrates with sizes ranging from 10 _ 10mm2 up to 3-in. in diameter. The authors have used a carbon sublimation source to grow graphene on sapphire at substrate temperatures between 1000 and 1650 _C (thermocouple temperatures). The quality of the graphene layers is significantly improved by growing on hexagonal boron nitride (h-BN) substrates. The authors observed a significant difference in the sticking coefficient of carbon on the surfaces of sapphire and h-BN flakes. Our atomic force microscopy measurements reveal the formation of an extended hexagonal moir_e pattern when our MBE layers of graphene on h-BN flakes are grown under optimum conditions. The authors attribute this moir_e pattern to the commensurate growth of crystalline graphene on h-BN

    Two-loop corrections to the decay rate of parapositronium

    Full text link
    Order α2\alpha^2 corrections to the decay rate of parapositronium are calculated. A QED scattering calculation of the amplitude for electron-positron annihilation into two photons at threshold is combined with the technique of effective field theory to determine an NRQED Hamiltonian, which is then used in a bound state calculation to determine the decay rate. Our result for the two-loop correction is 5.1243(33)5.1243(33) in units of (α/π)2(\alpha/\pi)^2 times the lowest order rate. This is consistent with but more precise than the result 5.1(3)5.1(3) of a previous calculation.Comment: 26 pages, 7 figure

    Impact Earth: A review of the terrestrial impact record

    Get PDF
    Over the past few decades, it has become increasingly clear that the impact of interplanetary bodies on other planetary bodies is one of the most ubiquitous and important geological processes in the Solar System. This impact process has played a fundamental role throughout the history of the Earth and other planetary bodies, resulting in both destructive and beneficial effects. The impact cratering record of Earth is critical to our understanding of the processes, products, and effects of impact events. In this contribution, we provide an up-to-date review and synthesis of the impact cratering record on Earth. Following a brief history of the Impact Earth Database (available online at http://www.impactearth.com), the definition of the main categories of impact features listed in the database, and an overview of the impact cratering process, we review and summarize the required evidence to confirm impact events. Based on these definitions and criteria, we list 188 hypervelocity impact craters and 13 impact craters (i.e., impact sites lacking evidence for shock metamorphism). For each crater, we provide details on key attributes, such as location, date confirmed, erosional level, age, target properties, diameter, and an overview of the shock metamorphic effects and impactites that have been described in the literature. We also list a large number of impact deposits, which we have classified into four main categories: tektites, spherule layers, occurrences of other types of glass, and breccias. We discuss the challenges of recognizing and confirming impact events and highlight weaknesses, contradictions, and inconsistencies in the literature. We then address the morphology and morphometry of hypervelocity impact craters. Based on the Impact Earth Database, it is apparent that the transition diameter from simple to complex craters for craters developed in sedimentary versus crystalline target rocks is less pronounced than previously reported, at approximately 3 km for both. Our analysis also yields an estimate for stratigraphic uplift of 0.0945D0.6862, which is lower than previous estimates. We ascribe this to more accurate diameter estimates plus the variable effects of erosion. It is also clear that central topographic peaks in terrestrial complex impact craters are, in general, more subdued than their lunar counterparts. Furthermore, a number of relatively well-preserved terrestrial complex impact structures lack central peaks entirely. The final section of this review provides an overview of impactites preserved in terrestrial hypervelocity impact craters. While approximately three quarters of hypervelocity impact craters on Earth preserve some portion of their crater-fill impactites, ejecta deposits are known from less than 10%. In summary, the Impact Earth Database provides an important new resource for researchers interested in impact craters and the impact cratering process and we welcome input from the community to ensure that the Impact Earth website (http://www.impactearth.com) is a living resource that is as accurate and as up-to-date, as possible

    Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth

    Get PDF
    The ecological consequences of climate change have been recognized in numerous species, with perhaps phenology being the most well-documented change. Phenological changes may have negative consequences when organisms within different trophic levels respond to environmental changes at different rates, potentially leading to phenological mismatches between predators and their prey. This may be especially apparent in the Arctic, which has been affected more by climate change than other regions, resulting in earlier, warmer, and longer summers. During a 7-year study near Utqiaġvik (formerly Barrow), Alaska, we estimated phenological mismatch in relation to food availability and chick growth in a community of Arctic-breeding shorebirds experiencing advancement of environmental conditions (i.e., snowmelt). Our results indicate that Arctic-breeding shorebirds have experienced increased phenological mismatch with earlier snowmelt conditions. However, the degree of phenological mismatch was not a good predictor of food availability, as weather conditions after snowmelt made invertebrate availability highly unpredictable. As a result, the food available to shorebird chicks that were 2–10 days old was highly variable among years (ranging from 6.2 to 28.8 mg trap−1 day−1 among years in eight species), and was often inadequate for average growth (only 20%–54% of Dunlin and Pectoral Sandpiper broods on average had adequate food across a 4-year period). Although weather conditions vary among years, shorebirds that nested earlier in relation to snowmelt generally had more food available during brood rearing, and thus, greater chick growth rates. Despite the strong selective pressure to nest early, advancement of nesting is likely limited by the amount of plasticity in the start and progression of migration. Therefore, long-term climatic changes resulting in earlier snowmelt have the potential to greatly affect shorebird populations, especially if shorebirds are unable to advance nest initiation sufficiently to keep pace with seasonal advancement of their invertebrate prey
    corecore