2,092 research outputs found

    The role of facial movements in emotion recognition

    Get PDF
    Most past research on emotion recognition has used photographs of posed expressions intended to depict the apex of the emotional display. Although these studies have provided important insights into how emotions are perceived in the face, they necessarily leave out any role of dynamic information. In this Review, we synthesize evidence from vision science, affective science and neuroscience to ask when, how and why dynamic information contributes to emotion recognition, beyond the information conveyed in static images. Dynamic displays offer distinctive temporal information such as the direction, quality and speed of movement, which recruit higher-level cognitive processes and support social and emotional inferences that enhance judgements of facial affect. The positive influence of dynamic information on emotion recognition is most evident in suboptimal conditions when observers are impaired and/or facial expressions are degraded or subtle. Dynamic displays further recruit early attentional and motivational resources in the perceiver, facilitating the prompt detection and prediction of others’ emotional states, with benefits for social interaction. Finally, because emotions can be expressed in various modalities, we examine the multimodal integration of dynamic and static cues across different channels, and conclude with suggestions for future research

    Glycoproteomic analysis of two mouse mammary cell lines during transforming growth factor (TGF)-β induced epithelial to mesenchymal transition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TGF-β acts as an antiproliferative factor in normal epithelial cells and at early stages of oncogenesis. However, later in tumor development TGF-β can become tumor promoting through mechanisms including the induction of epithelial-to-mesenchymal transition (EMT), a process that is thought to contribute to tumor progression, invasion and metastasis. To identify EMT-related breast cancer therapeutic targets and biomarkers, we have used two proteomic approaches to find proteins that change in abundance upon the induction of EMT by TGF-β in two mouse mammary epithelial cell lines, NMuMG and BRI-JM01.</p> <p>Results</p> <p>Preliminary experiments based on two-dimensional electrophoresis of a hydrophobic cell fraction identified only 5 differentially expressed proteins from BRI-JM01 cells. Since 3 of these proteins were glycoproteins, we next used the lectin, wheat germ agglutinin (WGA), to enrich for glycoproteins, followed by relative quantification of tryptic peptides using a label-free LC-MS based method. Using these approaches, we identified several proteins that are modulated during the EMT process, including cell adhesion molecules (several members of the Integrin family, Fibronectin, Activated leukocyte cell adhesion molecule, and Neural cell adhesion molecule 1) and regulators of cellular signaling (Tumor-associated calcium signal transducer 2, Basigin).</p> <p>Conclusion</p> <p>Interestingly, despite the fact that TGF-β induces similar EMT phenotypes in NMuMG and BRI-JM01 cells, the proteomic results for the two cell lines showed only minimal overlap. These differences likely result in part from the conservative cut-off values used to define differentially-expressed proteins in these experiments. Alternatively, it is possible that the two cell lines may use different mechanisms to achieve an EMT transition.</p

    A strontium optical lattice clock with 1 × 10‾¹⁷uncertainty and measurement of its absolute frequency

    Get PDF
    We present a measurement of the absolute frequency of the 5 s2 1S0 to 5s5p 3P0 transition in 87Sr which is a secondary representation of the SI second. We describe the optical lattice clock apparatus used for the measurement, and we focus in detail on how its systematic frequency shifts are evaluated with a total fractional uncertainty of 1 × 10−17. Traceability to the International System of Units is provided via comparison to International Atomic Time (TAI). Gathering data over 5- and 15-day periods, with the lattice clock operating on average 74% of the time, we measure the frequency of the transition to be 429 228 004 229 873.1 (5) Hz, which corresponds to a fractional uncertainty of 1 × 10−15. We describe in detail how this uncertainty arises from the intermediate steps linking the optical frequency standard, through our local time scale UTC(NPL), to an ensemble of primary and secondary frequency standards which steer TAI. The calculated absolute frequency of the transition is in good agreement with recent measurements carried out in other laboratories around the world

    Colouration in amphibians as a reflection of nutritional status : the case of tree frogs in Costa Rica

    Get PDF
    Colouration has been considered a cue for mating success in many species; ornaments in males often are related to carotenoid mobilization towards feathers and/or skin and can signal general health and nutrition status. However, there are several factors that can also link with status, such as physiological blood parameters and body condition, but there is not substantial evidence which supports the existence of these relationships and interactions in anurans. This study evaluated how body score and blood values interact with colouration in free-range Agalychnis callidryas and Agalychnis annae males. We found significant associations between body condition and plasmatic proteins and haematocrit, as well as between body condition and colour values from the chromaticity diagram. We also demonstrated that there is a significant relation between the glucose and plasmatic protein values that were reflected in the ventral colours of the animals, and haematocrit inversely affected most of those colour values. Significant differences were found between species as well as between populations of A. callidryas, suggesting that despite colour variation, there are also biochemical differences within animals from the same species located in different regions. These data provide information on underlying factors for colouration of male tree frogs in nature, provide insights about the dynamics of several nutrients in the amphibian model and how this could affect the reproductive output of the animals

    Generation of photoionized plasmas in the laboratory of relevance to accretion-powered x-ray sources using keV line radiation

    Get PDF
    We describe laboratory experiments to generate x-ray photoionized plasmas of relevance to accretion-powered x-ray sources such as neutron star binaries and quasars, with significant improvements over previous work. A key quantity is referenced, namely the photoionization parameter, defined as ξ = 4πF/newhere F is the x-ray flux and ne the electron density. This is normally meaningful in an astrophysical steady-state context, but is also commonly used in the literature as a figure of merit for laboratory experiments that are, of necessity, time-dependent. We demonstrate emission-weighted values of ξ > 50 erg-cm s−1 using laser-plasma x-ray sources, with higher results at the centre of the plasma which are in the regime of interest for several astrophysical scenarios. Comparisons of laboratory experiments with astrophysical codes are always limited, principally by the many orders of magnitude differences in time and spatial scales, but also other plasma parameters. However useful checks on performance can often be made for a limited range of parameters. For example, we show that our use of a keV line source, rather than the quasi-blackbody radiation fields normally employed in such experiments, has allowed the generation of the ratio of inner-shell to outer-shell photoionization expected from a blackbody source with ∼keV spectral temperature. We compare calculations from our in-house plasma modelling code with those from Cloudy and find moderately good agreement for the time evolution of both electron temperature and average ionisation. However, a comparison of code predictions for a K-β argon X-ray spectrum with experimental data reveals that our Cloudy simulation overestimates the intensities of more highly ionised argon species. This is not totally surprising as the Cloudy model was generated for a single set of plasma conditions, while the experimental data are spatially integrated

    Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    Full text link
    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss the proper implementation of the QED axial anomaly, the (ambiguous) definition of chiral currents, and the calculation of the chiral magnetic effect. We show that this model correctly contains the so-called consistent anomaly, but requires the introduction of a (holographic) finite counterterm to yield the correct covariant anomaly. Introducing net chirality through an axial chemical potential, we find a nonvanishing vector current only before including this counterterm. This seems to imply the absence of the chiral magnetic effect in this model. On the other hand, for a conventional quark chemical potential and large magnetic field, which is of interest in the physics of compact stars, we obtain a nontrivial result for the axial current that is in agreement with previous calculations and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent conductivity at the end of section 4; references added; version to appear in JHE

    Age and gender differences in disabling foot pain using different definitions of the manchester foot pain and disability index

    Get PDF
    Extent: 9p.Background: The Manchester Foot Pain and Disability Index (MFPDI) has been used to determine the prevalence of disabling foot pain in several studies, however there is some debate as to which case definition is most appropriate. The objective of this study was to explore age and gender differences in the proportion of people with disabling foot pain using three different case definitions of the MFPDI and for each individual MFPDI item. Methods: A random sample of 223 participants aged 27 to 90 years (88 males and 135 females) from the North West Adelaide Health Study, who reported having pain, aching or stiffness in either of their feet on most days in the last month, completed the MFPDI by telephone interview. The proportion of people with disabling foot pain was determined using three definitions: (i) Definition A-at least one of the 17 items documented on at least some days in the last month; (ii) Definition B-at least one of the 17 items documented on most/every day(s) in the last month, and; (iii) Definition C-at least one of the ten functional limitation items documented on most/every day(s) in the last month. Cross-tabulations and chi-squared statistics were used to explore differences in responses to the MFPDI items according to age and gender. Results: The proportion of people with disabling foot pain according to each definition was as follows: Definition A (100%), Definition B (95.1%) and Definition C (77.6%). Definition C was most sensitive to age and gender differences. Exploration of individual MFPDI items indicated that age significantly affected both the pain intensity and functional limitation items, with younger people more likely to report their foot pain being worse in the morning, and older people more likely to report functional limitations. Although gender did not influence responses to the personal appearance items, women were more likely report functional limitations than men. Conclusions: Definition C of the MFPDI is more sensitive to age and gender differences in the proportion of people with disabling foot pain, and would therefore seem to be the most appropriate case definition to use in epidemiological studies involving a broad age range of participants.Hylton B Menz, Tiffany K Gill, Anne W Taylor and Catherine L Hil

    Changes in undergraduate student alcohol consumption as they progress through university

    Get PDF
    BACKGROUND: Unhealthy alcohol use amongst university students is a major public health concern. Although previous studies suggest a raised level of consumption amongst the UK student population there is little consistent information available about the pattern of alcohol consumption as they progress through university. The aim of the current research was to describe drinking patterns of UK full-time undergraduate students as they progress through their degree course. METHOD: Data were collected over three years from 5895 undergraduate students who began their studies in either 2000 or 2001. Longitudinal data (i.e. Years 1–3) were available from 225 students. The remaining 5670 students all responded to at least one of the three surveys (Year 1 n = 2843; Year 2 n = 2219; Year 3 n = 1805). Results: Students reported consuming significantly more units of alcohol per week at Year 1 than at Years 2 or 3 of their degree. Male students reported a higher consumption of units of alcohol than their female peers. When alcohol intake was classified using the Royal College of Physicians guidelines [1] there was no difference between male and females students in terms of the percentage exceeding recommended limits. Compared to those who were low level consumers students who reported drinking above low levels at Year 1 had at least 10 times the odds of continuing to consume above low levels at year 3. Students who reported higher levels of drinking were more likely to report that alcohol had a negative impact on their studies, finances and physical health. Consistent with the reduction in units over time students reported lower levels of negative impact during Year 3 when compared to Year 1. CONCLUSION: The current findings suggest that student alcohol consumption declines over their undergraduate studies; however weekly levels of consumption at Year 3 remain high for a substantial number of students. The persistence of high levels of consumption in a large population of students suggests the need for effective preventative and treatment interventions for all year groups

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    iQuantitator: A tool for protein expression inference using iTRAQ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isobaric Tags for Relative and Absolute Quantitation (iTRAQ™) [Applied Biosystems] have seen increased application in differential protein expression analysis. To facilitate the growing need to analyze iTRAQ data, especially for cases involving multiple iTRAQ experiments, we have developed a modeling approach, statistical methods, and tools for estimating the relative changes in protein expression under various treatments and experimental conditions.</p> <p>Results</p> <p>This modeling approach provides a unified analysis of data from multiple iTRAQ experiments and links the observed quantity (reporter ion peak area) to the experiment design and the calculated quantity of interest (treatment-dependent protein and peptide fold change) through an additive model under log transformation. Others have demonstrated, through a case study, this modeling approach and noted the computational challenges of parameter inference in the unbalanced data set typical of multiple iTRAQ experiments. Here we present the development of an inference approach, based on hierarchical regression with batching of regression coefficients and Markov Chain Monte Carlo (MCMC) methods that overcomes some of these challenges. In addition to our discussion of the underlying method, we also present our implementation of the software, simulation results, experimental results, and sample output from the resulting analysis report.</p> <p>Conclusion</p> <p>iQuantitator's process-based modeling approach overcomes limitations in current methods and allows for application in a variety of experimental designs. Additionally, hypertext-linked documents produced by the tool aid in the interpretation and exploration of results.</p
    corecore