8 research outputs found

    Risk management to prioritise the eradication of new and emerging invasive non-native species

    Get PDF
    Robust tools are needed to prioritise the management of invasive non-native species (INNS). Risk assessment is commonly used to prioritise INNS, but fails to take into account the feasibility of management. Risk management provides a structured evaluation of management options, but has received little attention to date. We present a risk management scheme to assess the feasibility of eradicating INNS that can be used, in conjunction with existing risk assessment schemes, to support prioritisation. The Non-Native Risk Management scheme (NNRM) can be applied to any predefined area and any taxa. It uses semi-quantitative response and confidence scores to assess seven key criteria: Effectiveness, Practicality, Cost, Impact, Acceptability, Window of opportunity and Likelihood of re-invasion. Scores are elicited using expert judgement, supported by available evidence, and consensus-building methods. We applied the NNRM to forty-one INNS that threaten Great Britain (GB). Thirty-three experts provided scores, with overall feasibility of eradication assessed as ‘very high’ (8 species), ‘high’ (6), ‘medium’ (8), ‘low’ (10) and ‘very low’ (9). The feasibility of eradicating terrestrial species was higher than aquatic species. Lotic freshwater and marine species scored particularly low. Combining risk management and existing risk assessment scores identified six established species as priorities for eradication. A further six species that are not yet established were identified as priorities for eradication on arrival as part of contingency planning. The NNRM is one of the first INNS risk management schemes that can be used with existing risk assessments to prioritise INNS eradication in any area

    NEUROlogical Prognosis After Cardiac Arrest in Kids (NEUROPACK) study: protocol for a prospective multicentre clinical prediction model derivation and validation study in children after cardiac arrest

    Get PDF
    Introduction Currently, we are unable to accurately predict mortality or neurological morbidity following resuscitation after paediatric out of hospital (OHCA) or in-hospital (IHCA) cardiac arrest. A clinical prediction model may improve communication with parents and families and risk stratification of patients for appropriate postcardiac arrest care. This study aims to the derive and validate a clinical prediction model to predict, within 1 hour of admission to the paediatric intensive care unit (PICU), neurodevelopmental outcome at 3 months after paediatric cardiac arrest. Methods and analysis A prospective study of children (age: >24 hours and <16 years), admitted to 1 of the 24 participating PICUs in the UK and Ireland, following an OHCA or IHCA. Patients are included if requiring more than 1 min of cardiopulmonary resuscitation and mechanical ventilation at PICU admission Children who had cardiac arrests in PICU or neonatal intensive care unit will be excluded. Candidate variables will be identified from data submitted to the Paediatric Intensive Care Audit Network registry. Primary outcome is neurodevelopmental status, assessed at 3 months by telephone interview using the Vineland Adaptive Behavioural Score II questionnaire. A clinical prediction model will be derived using logistic regression with model performance and accuracy assessment. External validation will be performed using the Therapeutic Hypothermia After Paediatric Cardiac Arrest trial dataset. We aim to identify 370 patients, with successful consent and follow-up of 150 patients. Patient inclusion started 1 January 2018 and inclusion will continue over 18 months. Ethics and dissemination Ethical review of this protocol was completed by 27 September 2017 at the Wales Research Ethics Committee 5, 17/WA/0306. The results of this study will be published in peer-reviewed journals and presented in conferences. Trial registration number NCT03574025

    Characterising differences between self-reported and wastewater-identified drug use at two consecutive years of an Australian music festival.

    Get PDF
    BackgroundIn the context of drug prohibition, potential adulteration and variable purity pose additional health risks for people who use drugs, with these risks often compounded by the outdoor music festival environment. Ahead of the imminent implementation of drug checking services in Queensland, Australia, this study aims to characterise this problem using triangulated survey and wastewater data to understand self-reported and detected drug use among attendees of a multi-day Queensland-based music festival in 2021 and 2022.MethodsWe administered an in-situ survey focusing on drug use at the festival to two convenience samples of 136 and 140 festival attendees in 2021 and 2022 respectively. We compared survey findings to wastewater collected concurrently from the festival's site-specific wastewater treatment plant, which was analysed using Liquid Chromatography Tandem Mass Spectrometry.ResultsMost survey respondents (82 % in 2021, 92 % in 2022) reported using or intending to use an illicit drug at the festival. Some respondents reported potentially risky drug use practices such as using drugs found on the ground (2 % in 2021, 4 % in 2022). Substances detected in wastewater but not surveys include MDEA, mephedrone, methylone, 3-MMC, alpha-D2PV, etizolam, eutylone, and N,N-dimethylpentylone.ConclusionMany substances detected in wastewater but not self-reported in surveys likely represent substitutions or adulterants. These findings highlight the benefits of drug checking services to prevent harms from adulterants and provide education on safer drug use practices. These findings also provide useful information on socio-demographic characteristics and drug use patterns of potential users of Queensland's future drug checking service

    Serotype-specific detection of dengue viruses in a nonstructural protein 1-based enzyme-linked immunosorbent assay validated with a multi-national cohort

    No full text
    © 2020 Bosch et al. Background Dengue virus (DENV) infections pose one of the largest global barriers to human health. The four serotypes (DENV 1–4) present different symptoms and influence immune response to subsequent DENV infections, rendering surveillance, risk assessments, and disease control particularly challenging. Early diagnosis and appropriate clinical management is critical and can be achieved by detecting DENV nonstructural protein 1 (NS1) in serum during the acute phase. However, few NS1-based tests have been developed that are capable of differentiat-ing DENV serotypes and none are currently commercially available. Methodology/Principle findings We developed an enzyme-linked immunosorbent assay (ELISA) to distinguish DENV-1-4 NS1 using serotype-specific pairs of monoclonal antibodies. A total of 1,046 antibodies were harvested from DENV-immunized mice and screened for antigen binding affinity. ELISA clinical performance was evaluated using 408 polymerase chain reaction-confirmed dengue samples obtained from patients in Brazil, Honduras, and India. The overall sensitiv-ity of the test for pan-DENV was 79.66% (325/408), and the sensitivities for DENV-1-4 sero-typing were 79.1% (38/48), 80.41% (78/97), 100% (45/45), and 79.6% (98/123), respectively. Specificity reached 94.07–100%. Significance Our study demonstrates a robust antibody screening strategy that enabled the development of a serotype NS1-based ELISA with maximized specific and sensitive antigen binding. This sensitive and specific assay also utilized the most expansive cohort to date, and of which about half are from Latin America, a geographic region severely underrepresented in previous similar studies. This ELISA test offers potential enhanced diagnostics during the acute phase of infection to help guide patient care and disease control. These results indicate that this ELISA is a promising aid in early DENV-1-4 diagnosis and surveillance in regions of endemicity in addition to offer convenient monitoring for future vaccine interventions

    A strategy for successful integration of DNA-based methods in aquatic monitoring

    Get PDF
    Recent advances in molecular biomonitoring open new horizons for aquatic ecosystem assessment. Rapid and cost-effective methods based on organismal DNA or environmental DNA (eDNA) now offer the opportunity to produce inventories of indicator taxa that can subsequently be used to assess biodiversity and ecological quality. However, the integration of these new DNA-based methods into current monitoring practices is not straightforward, and will require coordinated actions in the coming years at national and international levels. To plan and stimulate such an integration, the European network DNAqua-Net (COST Action CA15219) brought together international experts from academia, as well as key environmental biomonitoring stakeholders from different European countries. Together, this transdisciplinary consortium developed a roadmap for implementing DNA-based methods with a focus on inland waters assessed by the EU Water Framework Directive (2000/60/EC). This was done through a series of online workshops held in April 2020, which included fifty participants, followed by extensive synthesis work. The roadmap is organised around six objectives: 1) to highlight the effectiveness and benefits of DNA-based methods, 2) develop an adaptive approach for the implementation of new methods, 3) provide guidelines and standards for best practice, 4) engage stakeholders and ensure effective knowledge transfer, 5) support the environmental biomonitoring sector to achieve the required changes, 6) steer the process and harmonise efforts at the European level. This paper provides an overview of the forum discussions and the common European views that have emerged from them, while reflecting the diversity of situations in different countries. It highlights important actions required for a successful implementation of DNA-based biomonitoring of aquatic ecosystems by 2030
    corecore