4,412 research outputs found
An Origin of the Huge Far-Infrared Luminosity of Starburst Mergers
Recently Taniguchi and Ohyama found that the higher CO to CO
integrated intensity ratios at a transition =1--0, CO)CO) , in a sample of starburst merging
galaxies such as Arp 220 are mainly attributed to the depression of CO
emission with respect to CO. Investigating the same sample of galaxies
analyzed by Taniguchi & Ohyama, we find that there is a tight, almost linear
correlation between the dust mass and CO luminosity. This implies that
dust grains are also depressed in the high- starburst mergers, leading to
the higher dust temperature () in them because of the relative
increase in the radiation density. Nevertheless, the average dust mass () of the high- starburst mergers is higher significantly than that of
non-high galaxies. This is naturally understood because the galaxy mergers
could accumulate a lot of dust grains from their progenitor galaxies together
with supply of dust grains formed newly in the star forming regions. Since
(FIR) given the dust emissivity law, , the increases in both and
explain well why the starburst mergers are so bright in the FIR. We discuss
that the superwind activity plays an important role in destroying dust grains
as well as dense gas clouds in the central region of mergers.Comment: 10 pages (aaspp4.sty), 3 postscript figures (embedded). Accepted for
publication in Astrophysical Journal Letter
Far infrared and submillimeter brightness temperatures of the giant planets
The brightness temperatures of Jupiter, Saturn, Uranus, and Neptune in the range 35 to 1000 micron. The effective temperatures derived from the measurements, supplemented by shorter wavelength Voyager data for Jupiter and Saturn, are 126.8 + or - 4.5 K, 93.4 + or - 3.3 K, 58.3 + or - 2.0 K, and 60.3 + or - 2.0 K, respectively. The implications of the measurements for bolometric output and for atmospheric structure and composition are discussed. The temperature spectrum of Jupiter shows a strong peak at approx. 350 microns followed by a deep valley at approx. 450 to 500 microns. Spectra derived from model atmospheres qualitatively reproduced these features but do not fit the data closely
Fungal Desaturases and Related Methods
The presently-disclosed subject matter provides isolated nucleic acid and amino acid sequences encoding mushroom desaturase polypeptides that are active with both palmitic and stearic acid, as well as vectors and transgenic plant cells comprising nucleic acids of the presently-disclosed subject matter. The presently-disclosed subject matter further provides methods of producing monounsaturated fatty acids, such as palmitoleic acid (16:1), and monounsaturated fatty acids prepared by the methods disclosed herein
High Mass Starless Cores
We report the identification of a sample of potential High-Mass Starless
Cores (HMSCs). The cores were discovered by comparing images of the fields
containing candidate High-Mass Protostellar Objects (HMPOs) at 1.2mm and
mid-infrared (8.3um; MIR) wavelengths. While the HMPOs are detected at both
wavelengths, several cores emitting at 1.2mm in the same fields show absorption
or no emission at the MIR wavelength. We argue that the absorption is caused by
cold dust. The estimated masses of a few 10^2Msun - 10^3 Msun and the lack of
IR emission suggests that they may be massive cold cores in a pre-stellar
phase, which could presumably form massive stars eventually. Ammonia (1,1) and
(2,2) observations of the cores indicate smaller velocity dispersions and lower
rotation temperatures compared to HMPOs and UCHII regions suggesting a
quiescent pre-stellar stage. We propose that these newly discovered cores are
good candidates for the HMSC stage in high-mass star-formation. This sample of
cores will allow us to study the high-mass star and cluster formation processes
at the earliest evolutionary stages.Comment: 7 pages, 3 figures, 1 table, to be published in ApJL, author names
replaced with comma separatio
Star Formation in the Northern Cloud Complex of NGC 2264
We have made continuum and spectral line observations of several outflow
sources in the Mon OB1 dark cloud (NGC 2264) using the Heinrich Hertz Telescope
(HHT) and ARO 12m millimeter-wave telescope. This study explores the kinematics
and outflow energetics of the young stellar systems observed and assesses the
impact star formation is having on the surrounding cloud environment. Our data
set incorporates 12CO(3-2), 13CO(3-2), and 12CO(1-0) observations of outflows
associated with the sources IRAS 06382+1017 and IRAS 06381+1039, known as IRAS
25 and 27, respectively, in the northern cloud complex. Complementary 870
micron continuum maps were made with the HHT 19 channel bolometer array. Our
results indicate that there is a weak (approximately less than 0.5%) coupling
between outflow kinetic energy and turbulent energy of the cloud. An analysis
of the energy balance in the IRAS 25 and 27 cores suggests they are maintaining
their dynamical integrity except where outflowing material directly interacts
with the core, such as along the outflow axes.Comment: 28 pages including 6 figures, to be published in ApJ 01 July 2006,
v645, 1 issu
On the degrees of freedom of a semi-Riemannian metric
A semi-Riemannian metric in a n-manifold has n(n-1)/2 degrees of freedom,
i.e. as many as the number of components of a differential 2-form. We prove
that any semi-Riemannian metric can be obtained as a deformation of a constant
curvature metric, this deformation being parametrized by a 2-for
Revealing the environs of the remarkable southern hot core G327.3-0.6
We present a submm study of the massive hot core G327.3-0.6 that constrains
its physical parameters and environment. The APEX telescope was used to image
CO and N2H+ emission, to observe lines from other molecules toward a hot and a
cold molecular core, and to measure the continuum flux density of the hot core.
In the C18O J=3-2 line, two clumps were found, one associated with the HII
region G327.3-0.5 and the other associated with the hot core. An additional
cold clump is found 30 arcsec (0.4 pc) northeast of the hot core in bright N2H+
emission. From the the continuum data, we calculate a mass of 420 Msol and a
size of 0.1 pc for the hot core. A new, more accurate position of the hot core
is reported, which allows the association of the core with a bright
mid-infrared source. The luminosity of the hot core is estimated to be between
5 and 15 10^4 Lsol. This study revealed several different evolutionary stages
of massive star formation in the G327.3-0.6 region.Comment: APEX A&A special issue, accepte
A Submillimeter Study of the Star-Forming Region NGC7129
New molecular (13CO J=3-2) and dust continuum (450 and 850 micron) SCUBA maps
of the NGC7129 star forming region are presented, complemented by C18O J=3-2
spectra at several positions within the mapped region. The maps include the
Herbig Ae/Be star LkHalpha 234, the far-infrared source NGC 7129 FIRS2 and
several other pre-stellar sources embedded within the molecular ridge.
The SCUBA maps help us understand the nature of the pre-main sequence stars
in this actively star forming region. A deeply embedded submillimeter source,
SMM2, not clearly seen in any earlier data set, is shown to be a pre-stellar
core or possibly a protostar. The highest continuum peak emission is identified
with the deeply embedded source IRS6, a few arcseconds away from LkHalpha 234,
and also responsible for both the optical jet and the molecular outflow. The
gas and dust masses are found to be consistent, suggesting little or no CO
depletion onto grains. The dust emissivity index is lower towards the dense
compact sources, beta ~1 - 1.6, and higher, beta ~ 2.0, in the surrounding
cloud, implying small size grains in the PDR ridge, whose mantles have been
evaporated by the intense UV radiation.Comment: Accepted by Ap
- âŠ