We report the identification of a sample of potential High-Mass Starless
Cores (HMSCs). The cores were discovered by comparing images of the fields
containing candidate High-Mass Protostellar Objects (HMPOs) at 1.2mm and
mid-infrared (8.3um; MIR) wavelengths. While the HMPOs are detected at both
wavelengths, several cores emitting at 1.2mm in the same fields show absorption
or no emission at the MIR wavelength. We argue that the absorption is caused by
cold dust. The estimated masses of a few 10^2Msun - 10^3 Msun and the lack of
IR emission suggests that they may be massive cold cores in a pre-stellar
phase, which could presumably form massive stars eventually. Ammonia (1,1) and
(2,2) observations of the cores indicate smaller velocity dispersions and lower
rotation temperatures compared to HMPOs and UCHII regions suggesting a
quiescent pre-stellar stage. We propose that these newly discovered cores are
good candidates for the HMSC stage in high-mass star-formation. This sample of
cores will allow us to study the high-mass star and cluster formation processes
at the earliest evolutionary stages.Comment: 7 pages, 3 figures, 1 table, to be published in ApJL, author names
replaced with comma separatio