5 research outputs found

    Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed Whole Genome Sequencing Study

    No full text
    Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities

    The power of genetic diversity in genome-wide association studies of lipids

    Get PDF
    Elevated blood lipid levels are heritable risk factors of cardiovascular disease with varying prevalence worldwide due to differing dietary patterns and medication use(1). Despite advances in prevention and treatment, particularly through the lowering of low-density lipoprotein cholesterol levels(2), heart disease remains the leading cause of death worldwide(3). Genome-wide association studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS(4–23) have been conducted in European ancestry populations and may have missed genetic variants contributing to lipid level variation in other ancestry groups due to differences in allele frequencies, effect sizes, and linkage-disequilibrium (LD) patterns(24). Here we conduct a multi-ancestry genome-wide genetic discovery meta-analysis of lipid levels in ~1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support expanding recruitment into new ancestries even with relatively smaller sample sizes. We find that increasing diversity rather than studying additional European ancestry individuals results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in N~295,000 from 6 ancestries), with modest gains in the number of discovered loci and ancestry-specific variants. As GWAS expands its emphasis beyond identifying genes and fundamental biology towards using genetic variants for preventive and precision medicine(25), we anticipate that increased participant diversity will lead to more accurate and equitable(26) application of polygenic scores in clinical practice

    The power of genetic diversity in genome-wide association studies of lipids

    No full text
    Abstract Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4‐23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice

    The power of genetic diversity in genome-wide association studies of lipids (Author Correction: vol 600, pg 675, 2021)

    No full text
    corecore