19 research outputs found

    Cutting force sensor based on digital image correlation for segmented chip formation analysis

    Get PDF
    Conventional piezoelectric sensors cannot record the force fluctuations at high frequencies to monitor serrated chip formation. Recently, force measurements by using digital image correlation (DIC) have been reported thanks to imaging devices that become more and more efficient, thereby opening possibilities of high rate acquisition. This study proposes to apply DIC based on closed-form solutions in order to measure cutting forces at camera acquisition frequency. The considered displacement fields are obtained from the Flamant–Boussinesq solution. This method is first applied to picture pairs shot during the cut and then to a full sequence of pictures recorded upon orthogonal cutting of hardened AISI 52100 steel with a c-BN tool. To validate part of the corresponding mechanism, the change of cutting forces is finally investigated when chip segments are formed

    Couplage Ă©lectro-elastique et adsorption : vers une nouvelle instrumentation en chimie analytique

    Get PDF
    On utilise des poutres de dimensions micrométriques comme capteurs de leur environnement. Toute modification de l'état électrochimique d'une face introduit alors une flexion du levier. On a montré par ailleurs qu'en utilisant un dispositif interférométrique de mesure de champ et une technique d'identification adaptée, on peut construire une modélisation du couplage électro-élastique. On montre ici comment la relation de couplage est modifiée par l'adsorption de molécules neutres à la surface, et on propose d'exploiter cet effet en chimie analytique

    Molecular differentiated initiator reactivity in the synthesis of poly(caprolactone)-based hydrophobic homopolymer and amphiphilic core corona star polymers

    Get PDF
    Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP’s using initiators that were more available to become directly involved with the Sn(Oct)2 in the “in-situ” formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of “in-situ” catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat

    Synthesis of polyesters and polycarbonates : homogeneous polymerization for subsequent use in heterogeneous polymerization allowing the recycling of the polymerization initiator

    No full text
    Depuis une soixantaine d’annĂ©es, les matiĂšres plastiques de types polyolĂ©fines (par exemple le polystyrĂšne, le polyĂ©thylĂšne, le polypropylĂšne) ont connu un essor considĂ©rable, au point de devenir, avec prĂšs de 50 millions de tonnes produites en 2009 en Europe seulement (250 millions de tonnes dans le monde), les matĂ©riaux les plus utilisĂ©s actuellement. Les polyolĂ©fines sont issues de ressources fossiles non renouvelables (d’origine pĂ©trochimique), de plus en plus rares et chĂšres. De plus, ces matĂ©riaux posent un problĂšme environnemental, principalement en ce qui concerne leur Ă©limination aprĂšs utilisation (stockage dans des dĂ©charges, pollutions
). En consĂ©quence, les polymĂšres biodĂ©gradables et biocompatibles peuvent constituer une alternative viable aux plastiques d’origine pĂ©trochimiques et sont dĂ©jĂ  utilisĂ©s dans des domaines comme l’emballage, les outils biomĂ©dicaux ou les nanotechnologies. L’avantage de ces polymĂšres est de limiter le recours aux Ă©nergies fossiles, puisqu’ils peuvent ĂȘtre issus de ressources renouvelables (blĂ©, soja, maĂŻs
). Le cycle de vie de ces produits implique une restitution des ressources prĂ©levĂ©es via leur biodĂ©gradation et les analyses de ce cycle de vie tendent Ă  montrer un impact moindre sur diffĂ©rents facteurs environnementaux (rĂ©chauffement climatique, acidification des pluies, nitrification des sols, Ă©mission d’ozone, etc.
) ainsi qu’une utilisation d’énergie et un rejet de CO2 infĂ©rieurs Ă  ceux des matĂ©riaux habituellement utilisĂ©s. La faible part de marchĂ© de ces matĂ©riaux, quoiqu’en forte augmentation, est en partie dĂ»e Ă  leur coĂ»t, qui reste de cinq Ă  dix fois supĂ©rieur Ă  celui des plastiques traditionnels, ainsi qu’à leurs plus faibles propriĂ©tĂ©s de rĂ©sistances thermique et mĂ©canique. La problĂ©matique actuelle est donc de crĂ©er des matĂ©riaux bon marchĂ© aux propriĂ©tĂ©s physiques amĂ©liorĂ©es. Les polyesters et polycarbonates aliphatiques ont reçu une attention croissante ces derniĂšres annĂ©es. Les polyesters/polycarbonates biodĂ©gradables mentionnĂ©s prĂ©cĂ©demment peuvent ĂȘtre obtenus via diffĂ©rentes voies, mais la mĂ©thode de choix pour effectuer une polymĂ©risation contrĂŽlĂ©e (contrĂŽle de la longueur de chaĂźne et de la tacticitĂ© du polymĂšre) est la polymĂ©risation par ouverture de cycle (ROP). Ce travail de thĂšse s’est donc focalisĂ© sur la synthĂšse de complexes bien dĂ©finis du groupe 13 pour leur application en tant qu' amorceurs de la ROP contrĂŽlĂ©e d’esters et de carbonates cycliques.Over the last sixty years, polyolefin-based plastics (for instance polystyrene, polyethylene, polypropylene) have considerably been developed, to become, with nearly 50 millions of tons produced in Europe in 2009 (250 millions of tons in the world), the most used materials today. Polyolefins are made from non renewable fossil resources (petrochemical origin), more and more rare and expensive. Moreover, these materials pose an environmental problem, mostly concerning their elimination after their use (waste storage, pollution
). As a consequence, biodegradable and biocompatible polymers may be a viable alternative to petrochemical-based plastics and are already used in domains such as packaging, biomedical tools or nanotechnologies. The advantages of these polymers are to limit the use of fossil energies, as they may derive from renewable resources (wheat, soybean, corn
). The life cycle of these products involves a restitution of the withdrawn resources via their biodegradation and the analyses of this life cycle show a lower impact on the different environmental factors (global warming, rain acidification, ground nitrification, ozone emission, etc
) and a lower use of energy end CO2 emission than those of the usually used materials. The low use of these materials, although in high increase, is partially due to their cost, which is five to ten times higher to the one of traditional plastics, and to their weaker thermal and mechanical resistances. Today, the problematic is to create unexpensive materials possessing improved physical properties. Aliphatic polyesters and polycarbonates (poly(lactic acid) (PLA), poly(s-caprolactone) (PCL), poly(trimethylene carbonate) (PTMC)) have received increasing attention over the last years. They can be obtained via different ways, but the method of choice to allow a controlled polymerization (controlled chain length and tacticity of the polymer) is the ring-opening polymerization (ROP). This PhD work has focused on the synthesis of well-defined group 13 complexes for their application as initiators for the controlled ROP of cyclic esters and carbonates

    Synthesis of polyesters and polycarbonates : homogeneous polymerization for subsequent use in heterogeneous polymerization allowing the recycling of the polymerization initiator

    No full text
    Depuis une soixantaine d’annĂ©es, les matiĂšres plastiques de types polyolĂ©fines (par exemple le polystyrĂšne, le polyĂ©thylĂšne, le polypropylĂšne) ont connu un essor considĂ©rable, au point de devenir, avec prĂšs de 50 millions de tonnes produites en 2009 en Europe seulement (250 millions de tonnes dans le monde), les matĂ©riaux les plus utilisĂ©s actuellement. Les polyolĂ©fines sont issues de ressources fossiles non renouvelables (d’origine pĂ©trochimique), de plus en plus rares et chĂšres. De plus, ces matĂ©riaux posent un problĂšme environnemental, principalement en ce qui concerne leur Ă©limination aprĂšs utilisation (stockage dans des dĂ©charges, pollutions
). En consĂ©quence, les polymĂšres biodĂ©gradables et biocompatibles peuvent constituer une alternative viable aux plastiques d’origine pĂ©trochimiques et sont dĂ©jĂ  utilisĂ©s dans des domaines comme l’emballage, les outils biomĂ©dicaux ou les nanotechnologies. L’avantage de ces polymĂšres est de limiter le recours aux Ă©nergies fossiles, puisqu’ils peuvent ĂȘtre issus de ressources renouvelables (blĂ©, soja, maĂŻs
). Le cycle de vie de ces produits implique une restitution des ressources prĂ©levĂ©es via leur biodĂ©gradation et les analyses de ce cycle de vie tendent Ă  montrer un impact moindre sur diffĂ©rents facteurs environnementaux (rĂ©chauffement climatique, acidification des pluies, nitrification des sols, Ă©mission d’ozone, etc.
) ainsi qu’une utilisation d’énergie et un rejet de CO2 infĂ©rieurs Ă  ceux des matĂ©riaux habituellement utilisĂ©s. La faible part de marchĂ© de ces matĂ©riaux, quoiqu’en forte augmentation, est en partie dĂ»e Ă  leur coĂ»t, qui reste de cinq Ă  dix fois supĂ©rieur Ă  celui des plastiques traditionnels, ainsi qu’à leurs plus faibles propriĂ©tĂ©s de rĂ©sistances thermique et mĂ©canique. La problĂ©matique actuelle est donc de crĂ©er des matĂ©riaux bon marchĂ© aux propriĂ©tĂ©s physiques amĂ©liorĂ©es. Les polyesters et polycarbonates aliphatiques ont reçu une attention croissante ces derniĂšres annĂ©es. Les polyesters/polycarbonates biodĂ©gradables mentionnĂ©s prĂ©cĂ©demment peuvent ĂȘtre obtenus via diffĂ©rentes voies, mais la mĂ©thode de choix pour effectuer une polymĂ©risation contrĂŽlĂ©e (contrĂŽle de la longueur de chaĂźne et de la tacticitĂ© du polymĂšre) est la polymĂ©risation par ouverture de cycle (ROP). Ce travail de thĂšse s’est donc focalisĂ© sur la synthĂšse de complexes bien dĂ©finis du groupe 13 pour leur application en tant qu' amorceurs de la ROP contrĂŽlĂ©e d’esters et de carbonates cycliques.Over the last sixty years, polyolefin-based plastics (for instance polystyrene, polyethylene, polypropylene) have considerably been developed, to become, with nearly 50 millions of tons produced in Europe in 2009 (250 millions of tons in the world), the most used materials today. Polyolefins are made from non renewable fossil resources (petrochemical origin), more and more rare and expensive. Moreover, these materials pose an environmental problem, mostly concerning their elimination after their use (waste storage, pollution
). As a consequence, biodegradable and biocompatible polymers may be a viable alternative to petrochemical-based plastics and are already used in domains such as packaging, biomedical tools or nanotechnologies. The advantages of these polymers are to limit the use of fossil energies, as they may derive from renewable resources (wheat, soybean, corn
). The life cycle of these products involves a restitution of the withdrawn resources via their biodegradation and the analyses of this life cycle show a lower impact on the different environmental factors (global warming, rain acidification, ground nitrification, ozone emission, etc
) and a lower use of energy end CO2 emission than those of the usually used materials. The low use of these materials, although in high increase, is partially due to their cost, which is five to ten times higher to the one of traditional plastics, and to their weaker thermal and mechanical resistances. Today, the problematic is to create unexpensive materials possessing improved physical properties. Aliphatic polyesters and polycarbonates (poly(lactic acid) (PLA), poly(s-caprolactone) (PCL), poly(trimethylene carbonate) (PTMC)) have received increasing attention over the last years. They can be obtained via different ways, but the method of choice to allow a controlled polymerization (controlled chain length and tacticity of the polymer) is the ring-opening polymerization (ROP). This PhD work has focused on the synthesis of well-defined group 13 complexes for their application as initiators for the controlled ROP of cyclic esters and carbonates

    SynthÚse de polyesters et polycarbonates : polymérisation en milieu homogÚne en vue d'une utilisation en milieu hétérogÚne permettant le recyclage de l'initiateur de polymérisation

    No full text
    Over the last sixty years, polyolefin-based plastics (for instance polystyrene, polyethylene, polypropylene) have considerably been developed, to become, with nearly 50 millions of tons produced in Europe in 2009 (250 millions of tons in the world), the most used materials today. Polyolefins are made from non renewable fossil resources (petrochemical origin), more and more rare and expensive. Moreover, these materials pose an environmental problem, mostly concerning their elimination after their use (waste storage, pollution
). As a consequence, biodegradable and biocompatible polymers may be a viable alternative to petrochemical-based plastics and are already used in domains such as packaging, biomedical tools or nanotechnologies. The advantages of these polymers are to limit the use of fossil energies, as they may derive from renewable resources (wheat, soybean, corn
). The life cycle of these products involves a restitution of the withdrawn resources via their biodegradation and the analyses of this life cycle show a lower impact on the different environmental factors (global warming, rain acidification, ground nitrification, ozone emission, etc
) and a lower use of energy end CO2 emission than those of the usually used materials. The low use of these materials, although in high increase, is partially due to their cost, which is five to ten times higher to the one of traditional plastics, and to their weaker thermal and mechanical resistances. Today, the problematic is to create unexpensive materials possessing improved physical properties. Aliphatic polyesters and polycarbonates (poly(lactic acid) (PLA), poly(s-caprolactone) (PCL), poly(trimethylene carbonate) (PTMC)) have received increasing attention over the last years. They can be obtained via different ways, but the method of choice to allow a controlled polymerization (controlled chain length and tacticity of the polymer) is the ring-opening polymerization (ROP). This PhD work has focused on the synthesis of well-defined group 13 complexes for their application as initiators for the controlled ROP of cyclic esters and carbonates.Depuis une soixantaine d’annĂ©es, les matiĂšres plastiques de types polyolĂ©fines (par exemple le polystyrĂšne, le polyĂ©thylĂšne, le polypropylĂšne) ont connu un essor considĂ©rable, au point de devenir, avec prĂšs de 50 millions de tonnes produites en 2009 en Europe seulement (250 millions de tonnes dans le monde), les matĂ©riaux les plus utilisĂ©s actuellement. Les polyolĂ©fines sont issues de ressources fossiles non renouvelables (d’origine pĂ©trochimique), de plus en plus rares et chĂšres. De plus, ces matĂ©riaux posent un problĂšme environnemental, principalement en ce qui concerne leur Ă©limination aprĂšs utilisation (stockage dans des dĂ©charges, pollutions
). En consĂ©quence, les polymĂšres biodĂ©gradables et biocompatibles peuvent constituer une alternative viable aux plastiques d’origine pĂ©trochimiques et sont dĂ©jĂ  utilisĂ©s dans des domaines comme l’emballage, les outils biomĂ©dicaux ou les nanotechnologies. L’avantage de ces polymĂšres est de limiter le recours aux Ă©nergies fossiles, puisqu’ils peuvent ĂȘtre issus de ressources renouvelables (blĂ©, soja, maĂŻs
). Le cycle de vie de ces produits implique une restitution des ressources prĂ©levĂ©es via leur biodĂ©gradation et les analyses de ce cycle de vie tendent Ă  montrer un impact moindre sur diffĂ©rents facteurs environnementaux (rĂ©chauffement climatique, acidification des pluies, nitrification des sols, Ă©mission d’ozone, etc.
) ainsi qu’une utilisation d’énergie et un rejet de CO2 infĂ©rieurs Ă  ceux des matĂ©riaux habituellement utilisĂ©s. La faible part de marchĂ© de ces matĂ©riaux, quoiqu’en forte augmentation, est en partie dĂ»e Ă  leur coĂ»t, qui reste de cinq Ă  dix fois supĂ©rieur Ă  celui des plastiques traditionnels, ainsi qu’à leurs plus faibles propriĂ©tĂ©s de rĂ©sistances thermique et mĂ©canique. La problĂ©matique actuelle est donc de crĂ©er des matĂ©riaux bon marchĂ© aux propriĂ©tĂ©s physiques amĂ©liorĂ©es. Les polyesters et polycarbonates aliphatiques ont reçu une attention croissante ces derniĂšres annĂ©es. Les polyesters/polycarbonates biodĂ©gradables mentionnĂ©s prĂ©cĂ©demment peuvent ĂȘtre obtenus via diffĂ©rentes voies, mais la mĂ©thode de choix pour effectuer une polymĂ©risation contrĂŽlĂ©e (contrĂŽle de la longueur de chaĂźne et de la tacticitĂ© du polymĂšre) est la polymĂ©risation par ouverture de cycle (ROP). Ce travail de thĂšse s’est donc focalisĂ© sur la synthĂšse de complexes bien dĂ©finis du groupe 13 pour leur application en tant qu' amorceurs de la ROP contrĂŽlĂ©e d’esters et de carbonates cycliques

    SynthÚse de polyesters et polycarbonates (polymérisation en milieu homogÚne en vue d'une utilisation en milieu hétérogÚne permettant le recyclage de l'initiateur de polymérisation)

    No full text
    Depuis une soixantaine d annĂ©es, les matiĂšres plastiques de types polyolĂ©fines (par exemple le polystyrĂšne, le polyĂ©thylĂšne, le polypropylĂšne) ont connu un essor considĂ©rable, au point de devenir, avec prĂšs de 50 millions de tonnes produites en 2009 en Europe seulement (250 millions de tonnes dans le monde), les matĂ©riaux les plus utilisĂ©s actuellement. Les polyolĂ©fines sont issues de ressources fossiles non renouvelables (d origine pĂ©trochimique), de plus en plus rares et chĂšres. De plus, ces matĂ©riaux posent un problĂšme environnemental, principalement en ce qui concerne leur Ă©limination aprĂšs utilisation (stockage dans des dĂ©charges, pollutions ). En consĂ©quence, les polymĂšres biodĂ©gradables et biocompatibles peuvent constituer une alternative viable aux plastiques d origine pĂ©trochimiques et sont dĂ©jĂ  utilisĂ©s dans des domaines comme l emballage, les outils biomĂ©dicaux ou les nanotechnologies. L avantage de ces polymĂšres est de limiter le recours aux Ă©nergies fossiles, puisqu ils peuvent ĂȘtre issus de ressources renouvelables (blĂ©, soja, maĂŻs ). Le cycle de vie de ces produits implique une restitution des ressources prĂ©levĂ©es via leur biodĂ©gradation et les analyses de ce cycle de vie tendent Ă  montrer un impact moindre sur diffĂ©rents facteurs environnementaux (rĂ©chauffement climatique, acidification des pluies, nitrification des sols, Ă©mission d ozone, etc. ) ainsi qu une utilisation d Ă©nergie et un rejet de CO2 infĂ©rieurs Ă  ceux des matĂ©riaux habituellement utilisĂ©s. La faible part de marchĂ© de ces matĂ©riaux, quoiqu en forte augmentation, est en partie dĂ»e Ă  leur coĂ»t, qui reste de cinq Ă  dix fois supĂ©rieur Ă  celui des plastiques traditionnels, ainsi qu Ă  leurs plus faibles propriĂ©tĂ©s de rĂ©sistances thermique et mĂ©canique. La problĂ©matique actuelle est donc de crĂ©er des matĂ©riaux bon marchĂ© aux propriĂ©tĂ©s physiques amĂ©liorĂ©es. Les polyesters et polycarbonates aliphatiques ont reçu une attention croissante ces derniĂšres annĂ©es. Les polyesters/polycarbonates biodĂ©gradables mentionnĂ©s prĂ©cĂ©demment peuvent ĂȘtre obtenus via diffĂ©rentes voies, mais la mĂ©thode de choix pour effectuer une polymĂ©risation contrĂŽlĂ©e (contrĂŽle de la longueur de chaĂźne et de la tacticitĂ© du polymĂšre) est la polymĂ©risation par ouverture de cycle (ROP). Ce travail de thĂšse s est donc focalisĂ© sur la synthĂšse de complexes bien dĂ©finis du groupe 13 pour leur application en tant qu' amorceurs de la ROP contrĂŽlĂ©e d esters et de carbonates cycliques.Over the last sixty years, polyolefin-based plastics (for instance polystyrene, polyethylene, polypropylene) have considerably been developed, to become, with nearly 50 millions of tons produced in Europe in 2009 (250 millions of tons in the world), the most used materials today. Polyolefins are made from non renewable fossil resources (petrochemical origin), more and more rare and expensive. Moreover, these materials pose an environmental problem, mostly concerning their elimination after their use (waste storage, pollution ). As a consequence, biodegradable and biocompatible polymers may be a viable alternative to petrochemical-based plastics and are already used in domains such as packaging, biomedical tools or nanotechnologies. The advantages of these polymers are to limit the use of fossil energies, as they may derive from renewable resources (wheat, soybean, corn ). The life cycle of these products involves a restitution of the withdrawn resources via their biodegradation and the analyses of this life cycle show a lower impact on the different environmental factors (global warming, rain acidification, ground nitrification, ozone emission, etc ) and a lower use of energy end CO2 emission than those of the usually used materials. The low use of these materials, although in high increase, is partially due to their cost, which is five to ten times higher to the one of traditional plastics, and to their weaker thermal and mechanical resistances. Today, the problematic is to create unexpensive materials possessing improved physical properties. Aliphatic polyesters and polycarbonates (poly(lactic acid) (PLA), poly(s-caprolactone) (PCL), poly(trimethylene carbonate) (PTMC)) have received increasing attention over the last years. They can be obtained via different ways, but the method of choice to allow a controlled polymerization (controlled chain length and tacticity of the polymer) is the ring-opening polymerization (ROP). This PhD work has focused on the synthesis of well-defined group 13 complexes for their application as initiators for the controlled ROP of cyclic esters and carbonates.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF
    corecore