53 research outputs found

    Easing the Reuse of ML Solutions by Interactive Clustering-based Autotuning in Scientific Applications

    Get PDF
    Software is disrupting one industry after another. Currently, the automotive industry is under pressure to innovate in the area of software. New, innovative approaches to vehicles and their HW/SW architectures are required and are currently subsumed under the term “SW-defined vehicle”. However, this trend does not stop at the vehicle boundaries, but also includes communication with off-board edge and cloud services. Thinking it through further, this leads to a breakthrough technology we call “Reliable Distributed Systems”, which enables the operation of vehicles where time and safety-critical sensing and computing tasks are no longer tied to the vehicle, but can be shifted into an edge-cloud continuum. This allows a variety of novel applications and functional improvements but also has a tremendous impact on automotive HW/SW architectures and the value chain. Reliable distributed systems are not limited to automotive use cases. The ubiquitous and reliable availability of distributed computing and sensing in real-time enable novel applications and system architectures in a variety of domains: from industrial automation over building automation to consumer robotics. However, designing reliable distributed systems raises several issues and poses new challenges for edge and cloud computing stacks as well as electronic design automation

    Spreading of perturbations in myosin group kinetics along actin filaments

    Get PDF
    Global changes in the state of spatially distributed systems can often be traced back to perturbations that arise locally. Whether such local perturbations grow into global changes depends on the system geometry and the spatial spreading of these perturbations. Here, we investigate how different spreading behaviors of local perturbations determine their global impact in 1-dimensional systems of different size. Specifically, we assessed sliding arrest events in in vitro motility assays where myosins propel actin, and simulated the underlying mechanochemistry of myosins that bind along the actin filament. We observed spontaneous sliding arrest events that occurred more frequently for shorter actin filaments. This observation could be explained by spontaneous local arrest of myosin kinetics that stabilizes once it spreads throughout an entire actin filament. When we introduced intermediate concentrations of the actin cross-linker filamin, longer actin was arrested more frequently. This observation was reproduced by simulations where filamin binding induces persistent local arrest of myosin kinetics, which subsequently spreads throughout the actin filament. A spin chain model with nearest-neighbor coupling reproduced key features of our experiments and simulations, thus extending to other linear systems with nearest-neighbor coupling the following conclusions: 1) perturbations that are persistent only once they spread throughout the system are more effective in smaller systems, and 2) perturbations that are persistent upon their establishment are more effective in larger systems. Beyond these general conclusions, our work also provides a theoretical model of collective myosin kinetics with a finite range of mechanical coupling along the actin filament

    Pre-Power-Stroke Cross-Bridges Contribute to Force Transients during Imposed Shortening in Isolated Muscle Fibers

    Get PDF
    When skeletal muscles are activated and mechanically shortened, the force that is produced by the muscle fibers decreases in two phases, marked by two changes in slope (P1 and P2) that happen at specific lengths (L1 and L2). We tested the hypothesis that these force transients are determined by the amount of myosin cross-bridges attached to actin and by changes in cross-bridge strain due to a changing fraction of cross-bridges in the pre-power-stroke state. Three separate experiments were performed, using skinned muscle fibers that were isolated and subsequently (i) activated at different Ca2+ concentrations (pCa2+ 4.5, 5.0, 5.5, 6.0) (n = 13), (ii) activated in the presence of blebbistatin (n = 16), and (iii) activated in the presence of blebbistatin at varying velocities (n = 5). In all experiments, a ramp shortening was imposed (amplitude 10%Lo, velocity 1 Lo‱sarcomere length (SL)‱s−1), from an initial SL of 2.5 ”m (except by the third group, in which velocities ranged from 0.125 to 2.0 Lo‱s−1). The values of P1, P2, L1, and L2 did not change with Ca2+ concentrations. Blebbistatin decreased P1, and it did not alter P2, L1, and L2. We developed a mathematical cross-bridge model comprising a load-dependent power-stroke transition and a pre-power-stroke cross-bridge state. The P1 and P2 critical points as well as the critical lengths L1 and L2 were explained qualitatively by the model, and the effects of blebbistatin inhibition on P1 were also predicted. Furthermore, the results of the model suggest that the mechanism by which blebbistatin inhibits force is by interfering with the closing of the myosin upper binding cleft, biasing cross-bridges into a pre-power-stroke state

    The hierarchical packing of euchromatin domains can be described as multiplicative cascades

    Get PDF
    The genome is packed into the cell nucleus in the form of chromatin. Biochemical approaches have revealed that chromatin is packed within domains, which group into larger domains, and so forth. Such hierarchical packing is equally visible in super-resolution microscopy images of large-scale chromatin organization. While previous work has suggested that chromatin is partitioned into distinct domains via microphase separation, it is unclear how these domains organize into this hierarchical packing. A particular challenge is to find an image analysis approach that fully incorporates such hierarchical packing, so that hypothetical governing mechanisms of euchromatin packing can be compared against the results of such an analysis. Here, we obtain 3D STED super-resolution images from pluripotent zebrafish embryos labeled with improved DNA fluorescence stains, and demonstrate how the hierarchical packing of euchromatin in these images can be described as multiplicative cascades. Multiplicative cascades are an established theoretical concept to describe the placement of ever-smaller structures within bigger structures. Importantly, these cascades can generate artificial image data by applying a single rule again and again, and can be fully specified using only four parameters. Here, we show how the typical patterns of euchromatin organization are reflected in the values of these four parameters. Specifically, we can pinpoint the values required to mimic a microphase-separated state of euchromatin. We suggest that the concept of multiplicative cascades can also be applied to images of other types of chromatin. Here, cascade parameters could serve as test quantities to assess whether microphase separation or other theoretical models accurately reproduce the hierarchical packing of chromatin

    The hierarchical packing of euchromatin domains can be described as multiplicative cascades

    Get PDF
    The genome is packed into the cell nucleus in the form of chromatin. Biochemical approaches have revealed that chromatin is packed within domains, which group into larger domains, and so forth. Such hierarchical packing is equally visible in super-resolution microscopy images of large-scale chromatin organization. While previous work has suggested that chromatin is partitioned into distinct domains via microphase separation, it is unclear how these domains organize into this hierarchical packing. A particular challenge is to find an image analysis approach that fully incorporates such hierarchical packing, so that hypothetical governing mechanisms of euchromatin packing can be compared against the results of such an analysis. Here, we obtain 3D STED super-resolution images from pluripotent zebrafish embryos labeled with improved DNA fluorescence stains, and demonstrate how the hierarchical packing of euchromatin in these images can be described as multiplicative cascades. Multiplicative cascades are an established theoretical concept to describe the placement of ever-smaller structures within bigger structures. Importantly, these cascades can generate artificial image data by applying a single rule again and again, and can be fully specified using only four parameters. Here, we show how the typical patterns of euchromatin organization are reflected in the values of these four parameters. Specifically, we can pinpoint the values required to mimic a microphase-separated state of euchromatin. We suggest that the concept of multiplicative cascades can also be applied to images of other types of chromatin. Here, cascade parameters could serve as test quantities to assess whether microphase separation or other theoretical models accurately reproduce the hierarchical packing of chromatin

    A DNA Segregation Module for Synthetic Cells

    Get PDF
    The bottom-up construction of an artificial cell requires the realization of synthetic cell division. Significant progress has been made toward reliable compartment division, yet mechanisms to segregate the DNA-encoded informational content are still in their infancy. Herein, droplets of DNA Y-motifs are formed by liquid–liquid phase separation. DNA droplet segregation is obtained by cleaving the linking component between two populations of DNA Y-motifs. In addition to enzymatic cleavage, photolabile sites are introduced for spatio-temporally controlled DNA segregation in bulk as well as in cell-sized water-in-oil droplets and giant unilamellar lipid vesicles (GUVs). Notably, the segregation process is slower in confinement than in bulk. The ionic strength of the solution and the nucleobase sequences are employed to regulate the segregation dynamics. The experimental results are corroborated in a lattice-based theoretical model which mimics the interactions between the DNA Y-motif populations. Altogether, engineered DNA droplets, reconstituted in GUVs, can represent a strategy toward a DNA segregation module within bottom-up assembled synthetic cells
    • 

    corecore