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Abstract—Machine learning techniques have revolutionised
scientific software projects. Scientists are continuously looking for
novel approaches to production-quality reuse of machine learning
solutions and to make them available to other components of
the project with satisfactory quality and low costs. However,
scientists often have limited knowledge about how to effectively
reuse and adjust machine learning solutions in their particular
scientific project. One challenge is that many machine learning
solutions require parameter tuning based on the input data to
achieve satisfactory results, which is difficult and cumbersome
for users not familiar with machine learning. Autotuning is the
common technique for potentially adjusting the parameters based
on the data, but it requires a well-defined objective function to
optimize for. Such an objective function is commonly unknown
in exploratory scientific research such as biological image seg-
mentation tasks. In this paper, we propose a framework based
on the novel combination of autotuning and active learning to
ease and partially automate the reuse effort of machine learning
solutions for scientists in biological image segmentation cases.
Underlying this combination is a mapping between an object type
and specific parameters applied during the segmentation process.
This mapping is iteratively adjusted by asking users for visual
feedback. We then through a biological case study demonstrate
that our method enables tuning of the segmentation specifically
to object types, while the selective requests of user input reduce
the number of user interactions required for this task.

Index Terms—Reuse of Machine Learning Solutions, Interac-
tive biological image segmentation, Auto tuning

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have
the potential to revolutionise scientific software. A particular
characteristic of scientific software is that it is commonly
developed and/or reused by scientists [1]. However, scientists
often have limited knowledge about how to reuse and deploy
machine learning solutions effectively. For example, in bio-
logical pipelines, ML segmentation solutions often need to be
reused and deployed by scientists who are not much familiar
with programming. Despite their lack of programming skills,
biologists require the target objects to be segmented in a way
that is satisfactory for further analysis.

One of the main challenges for scientists is to choose
between many ML solutions and adjust (i.e. tune) parameters
based on their own data to achieve their objectives with
effectiveness, efficiency, and satisfaction in the context of
use. This becomes even more challenging in scenarios where
multiple types of input data (e.g. different types of objects
in image segmentation) are to be handled by an ML solution
and where different parameter settings would be optimal for
each such type. This makes the search for optimal parameters
even more difficult, as an improvement for one type of input
may deteriorate the prediction quality for another type of
input and may lead to cycling back and forth in a manual
search. This challenge of selecting ML solutions, deploying
them and adjusting their parameters is especially difficult and
cumbersome for users not familiar with ML.

In supervised ML approaches, the reuse and deployment
can be easier as this tuning can be done automatically by
optimising an objective function that compares the predicted
label with the true label from the training data. However, the
adjustment of these algorithms for unknown data sets poses a
major challenge in practical application. One specific hurdle
is the annotation of objects by experienced domain specialists,
which often forms the basis for the adjustment of segmentation
algorithms, but is extremely labor-intensive. In unsupervised
ML approaches, where usually there is no training data to de-
fine an objective function on, automatically reuse and tuning is
only possible if another kind of objective function that assesses
the quality of prediction results is available. However, in many
use cases, such as image segmentation, no objective function
that captures all aspects of quality of solution is available.
One approach to tool-supported ML solution selection and
parameter tuning is to randomly generate solutions, to let the
users assess them and, based on that, to learn over time what
makes up a good solution (so-called active learning). However,
such a generic active learning approach typically needs many
interactions and easily becomes cumbersome for the user [2].

For this challenge of selecting and reusing ML solutions,



the literature also describes several tools that implement semi-
supervised ML with interactive user input. In these tools, the
biologists interactively provide annotations for part of the data
set on which a model is trained. The trained model is then
applied to the rest of the data set. The Waikato Environment
for Knowledge Analysis (WEKA) [3] is an interactive, semi-
supervised machine learning tool for image pixel classification.
Some example objects are annotated through a graphical user
interface to support training. The user can interactively provide
feedback by correcting or adding labels or annotations until
the trained model exhibits satisfying performance and can
be applied to the overall data set. Ilastik is another semi-
supervised tool that leverages machine learning to segment,
classify, track and count cells [4]. Also Ilastik is based on
annotation of only a part of the data set. Compared to other
ML segmentation tools, both WEKA and Ilastik reduce the
size of the required training data set. Nevertheless, these semi-
supervised tools still require the user to annotate objects that
are informative for training based on visual impression.

We propose a novel combination of auto-tuning and active
learning to ease the selection of ML solutions as well as their
parameter tuning effort for scientists. In our approach, we
cluster the input data and tune the parameters separately for
each cluster. Furthermore, we leverage that in some use cases,
although no objective function for auto-tuning is available that
covers all aspects of result quality, we can identify a metric
that approximates the quality of prediction results. In the case
of biological image segmentation, while there is no metric
to assess the overall quality of segmentation results, we can
define a metric that can preliminarily assess the quality of
results by comparing the segmented object with the pixels
in its neighbourhood. A core idea of this paper is that such
a metric helps us with the choice of candidates to show to
the user in active learning and thus reduces the number of
interactions with the user.

We especially focus on a use case from biology, namely the
object segmentation in biological images. Here, we provide a
framework which first maps the objects into different clusters
and provides selection and adjustment of the segmentation
solutions per cluster.

The contributions of our paper are summarized as follows
• We propose a framework for semi-supervised ML with

interactive user input that enables scientists to select ML
solutions and tune their parameters, with few interactions,
in scenarios where no labelled training data and no
objective function are available, but where a metric that
approximates quality can be defined.

• We provide such a metric for the use case of segmentation
in biomedical images.

• We conduct a biological case study in which users can
obtain satisfying results with effectiveness and efficiency
in a few interactions.

The expected benefits of our approach is that scientists who
are not ML experts can more easily reuse and deploy ML
solutions with high result quality. While we have evaluated
our approach for the use case of image segmentation only so

far, we expect that it is applicable for reusing and tuning of ML
solutions where (1) no labelled training data and no objective
function are available, (2) a global parameter settings would
not work for all the objects and the parameters ideally need
to be tuned separately for different input object types and (3)
a metric that approximates quality can be defined.

The rest of the paper is structured as follows. In Section II,
we present our specific use case, segmentation in biomedical
imaging. A brief summary of the segmentation metrics is
provided in Section III, followed by a demonstration of our
proposed framework in the next section (Section IV). We
introduce research questions and some information regarding
the evaluation and experiment on Section V. We then discuss
our results in the Section V-A and threats to validity in the
next section. The related works are studied in Section VII and
our conclusions are given in Section VIII.

II. SCIENTIFIC USE CASE

In biomedical images, the analysis of objects usually in-
volves quantifying multiple properties, for instance, object
shape, object location, or the intensity of an experimentally
applied label. In many cases, these measurements are based
on the segmentation of objects, meaning the assignment of
image pixels (or voxels) as “object” (1) or “not-object” (0).
Often, biological samples are treated with a target-specific
labeling substance, which provides high intensity levels that
can be exploited in ML-based object segmentation. A range of
commonly used segmentation algorithms exists, which deter-
mine an intensity threshold above which pixels are considered
“object”. These segmentation algorithms, however, typically
require adjustment to specific samples and labeling techniques.
A well-chosen and well-adjusted segmentation algorithm is
prerequisite for robust and precise segmentation, forming the
basis for analysis steps.

One of the simplest unsupervised intensity-based AI seg-
mentation approaches is thresholding [5]. Such algorithms
calculate a threshold intensity based on the intensity distribu-
tion in the image [6] and the setting of the algorithm can be
only adjusted manually by modifying the script. The threshold
intensity then is applied to separate pixels into two categories,
pixels with greater intensity than the threshold (assigned 1) and
pixels with lower intensity values (assigned 0). Other segmen-
tation methods are either in the form of interactive pipelines
with user-defined parameters (through user interactions) [4] or
deep networks (supervised) with automated parameter tuning
on the basis of large data sets [7].

For biologists, choosing between many supervised and
unsupervised ML segmentation solutions and deployment the
algorithm in their pipeline is challenging. For example, if
the microscopy images are of good quality and objects with
clear boundaries are to be analyzed, conventional unsupervised
thresholding solutions can be a good choice. However, if the
intensity profiles are obscured by noise or objects without
sharp boundaries and variable in size, intensity and morphol-
ogy (Fig. 1) [8] need to be analyzed, conventional AI methods
usually fail to properly segment the objects of interest [6]. In



contrast, supervised ML (fully-automated) segmentation algo-
rithms which automatically adapt the parameter based on the
given input and the annotated output are more robust against
the variety in the objects’ size, intensity and morphology.
However, these supervised methods require training data sets
consisting of annotated images. These annotated data sets
must be sufficiently comprehensive to avoid over-fitting, which
compromises segmentation of unknown images. Providing
such manually created training annotations is labour-intensive,
and requires knowledge of domain experts. The same limita-
tion arises when a supervised method needs to be re-trained
for new data sets, which typically also requires additional
annotation by expert biologists [9]. There are also semi-
supervised ML segmentation algorithm with interactive user
input. In these tools, users interactively provide annotations
for part of the data set and the software later segments the
unseen data [3], [4]. However, these tools still require the user
to annotate objects that are informative for training.

Our idea is to ease the selection and the deployment of ML
segmentation solutions by a framework that firstly searches
through the existing unsupervised segmentation solutions and
secondly optimises the parameter setting with the help of user
input seems to be a more practical approach in the bioimaging
pipeline where manually annotating is in practice infeasible.
However, it is important to make the interaction as short
as possible, to encourage end-users to deploy the algorithm
in their imaging pipeline. Here, we propose a framework
integrating autotuning of the unsupervised segmentation with
the user interactions, which enables biologists to easily find,
deploy and adjust the existing segmentation methods on their
own data. Underlying this framework is a mapping from
object-morphology feature space to the specific segmentation
algorithm and parameters applied during the segmentation
process. This mapping is iteratively adjusted by an alternation
between unsupervised (without additional user interactions)
and semi-supervised (with additional user interactions) train-
ing episodes, which is optimized to reduce the number of
user interactions. In other words, we ask the user to select
from alternative example segmentation, thereby adjusting the
segmentation algorithm per object type, with a few user
requests as possible. We apply our framework to the example
case of RNA Polymerase II (Pol II) segmentation in 2D super-
resolution microscopy images. These clusters exhibit highly
variable morphologies with diffuse boundaries, providing a
well-suited example case.

III. BACKGROUND: SEGMENTATION METRICS

Metrics to evaluate image segmentation can be categorized
based on different criteria. One criterion is whether a metric is
considered as subjective or objective [11]. Subjective metrics
are based on human visual assessments. These metrics are,
by definition, not formally defined. To reach a generalizable
result, the number of observers should be high.

Another criterion is whether the evaluation of a segmen-
tation approach is analytical or empirical [12]. In empirical
evaluations, the accuracy and precision are evaluated on the

Fig. 1. Shape, intensity and contrast of foci varies from one to
another Images are the nuclear mid-plane of a fixed zebrafish embryo at
sphere stage, which are recorded by STEDD super-resolution microscopy.
Intensity distributions of RNA Polymerase II (Pol II) Serine 5 phosphorylation
(Ser5P) were obtained by STEDD microscopy, while Pol II Ser2P intensity
distributions are obtained by regular confocal microscopy from the same plane.
Pol II Ser5P clusters are marked. Intensity scale from black to white adjusted
to the 0.01-th and the 99.99-th percentile [10]

basis of example data in a supervised fashion. An analytical
evaluation does not rely on example data, but rather analyzes
the theoretical properties of the segmentation [13].

As a third criterion, the evaluation of image segmentation
can be supervised (with annotated images) or unsupervised
(without annotated image). Supervised evaluation benefits
from the direct comparison between the segmentation re-
sults and the reference annotated image. The evaluation can
be based on per-pixel comparison (True Positive (TP) and
True Negative (TN), Matthews Correlation Coefficient (MCC)
and F-measure, region-based comparison (Bipartite Graph
Matching (BGM) [14] and Segmentation Covering (SC) [15])
or distance-based evaluation (Hausdorff Distance, directional
Hamming distance and Mahalanobis distance [16]). Unsuper-
vised metrics evaluate the quality of segmentation by directly
calculating the feature parameters of the segmentation result
without using the annotated reference image. These metrics
are the ideal kinds of metric especially when there is no
ground truth. These unsupervised metrics are mostly based on
mathematical indicators showing the quality of segmentation
results, such as Peak Signal to Noise Ratio [17], calculating
the inside and outside contrast of the segmentation area, or
measuring the foreground and background variances [17].

IV. METHOD

In this section, we propose our framework (Algorithm 1,
Fig.2) for the semi-automated deployment of image seg-
mentation solutions. The first step is object set preparation,
where the object positions are spotted and a bounding box
around the region-of-interest (ROI) is extracted and clustered
into some main categories. Within each object category, the
choice of segmentation solutions and the parameter adjust-
ments are performed. In other words, the framework initially
starts with 9 segmentation solutions in each object category,
and an unsupervised metric (Section. IV-D) is later used to
preliminary filter segmentation solutions with bad results and
picks some of the better-performed solutions and the related
results are presented to the users (Section. IV-C) for final
decision. The framework then proceeds to iteratively tune the
(hyper) parameters of the selected segmentation solution via
the presentation of selected segmented objects (Section. IV-C).



Algorithm 1 The proposed semi-automated framework for
bio-imaging segmentation
INPUT:
Streaming images {xi}ni=1

Base unsupervised segmentation algorithms
Φ⃗ = {ϕj(xi, λ⃗j)}mj=1

OUTPUT:
Optimum values for λ⃗j which is the parameters and
hyperparameters associated with segmentation algorithm
ϕj(.))

1: Prepare a dataset of objects according to Section IV-A
2: Cluster objects in different categories based on object

morphologies (Section IV-B)
3: Initiate {λ⃗j}mj=1

4: while
repeat for each morphology class until convergence do

5: Apply Φ⃗ = {ϕj}mj=1 to ith object (oi),
sij = ϕj(oi, λ⃗j)}mi=1

6: Filter segmentation results ({sij}mj=1) using metric
described in Section IV-D

7: Select the k best segmentation results (sij) for each
object

8: Show the selected results to the user
9: Optimise the pipeline based on the user selection

10: Update set Φ⃗ and λ⃗
11: end while

return Φ⃗, λ⃗j , s⃗

Fig. 2. The proposed framework consists of several automated steps. At the
beginning, the user uploads the input raw images and provides the number
of object clusters and the crop size. With a few interactions, the segmented
objects are given back to the user.

A. Object set preparation

In this step, the framework spots and crops the bounding box
around segmentation-target objects. Some simple thresholding
algorithms can successfully detect the position of the target
objects, however, depending on the experiments there might
be some other bright subcellular components making directly
spotting the region of interest (ROI) difficult (Fig. 1). The
framework therefore at first employs a filter to make the image
blurry and then proceeds with a thresholding technique to
only spot the ROIs. Generally, any blurry filter can be used,
however, in our particular application case, a Gaussian blur

filter with a standard deviation of 6 pixels is applied on each
nucleus, followed by a local thresholding method to roughly
spot the ROIs. A region of size (60× 60) is then cropped and
saved (Fig. 3).

Fig. 3. Detail views of objects. Representative Pol II Ser5P clusters mid-
section obtained by STEDD super-resolution microscopy from a fixed sphere-
stage zebrafish embryo. Each image is of size 60 × 60 pixels, The images
are randomly selected from a dataset of size 148

B. Feature space representation of object set

In machine learning, every measurable (mostly numeric)
property describing a characteristic of an object is generally
called feature. Each segmented-target object can be repre-
sented by a vector of features (min intensity, max intensity,
mean intensity, standard deviation, raw pixel values, ... ) and
feature space is the space spanned by the feature vectors. To
enable the choice of different algorithms for different types
of objects, the framework first establishes a classification of
the overall object sets into subgroups. Generally, any method
of classification can be used. In our particular application
case, previous work has proposed a classification into 3
morphological types [10]. Type i objects appear similar to a
dot, type ii objects are larger and relatively compact, type iii
objects are larger and unfolded in shape. Type i and type ii
objects have clear boundary lines, while type iii objects do not
offer a clear boundary and exhibit extensive morphological
variety (Fig. 3). Therefore, the segmentation algorithm and
parameters can be expected to differ between type iii and other
object types.

In our particular application case, the framework uses K-
nearest neighbor (kNN) algorithm to group objects in 2
subgroups (one subgroup with type iii objects and another
subgroup contains remaining objects).

C. Semi-automated choice and adjustment of segmentation
algorithm

For each cluster, several segmentation algorithms with de-
fault settings (Table I) are employed to segment objects cate-
gorised in that specific cluster. In principle, any segmentation
algorithm can be used here. For simplicity, in our application
case, the framework only considers segmentation methods
based on the thresholding technique.

The framework then uses an unsupervised metric (Section
IV-D) to select the 5 best segmentation algorithms. Then
it randomly selects a few objects and presents the selected



Fig. 4. Detail views of the object of the 3 apparent morphology Type i objects
are small and appear similar to a dot, type ii objects are larger and compact,
type iii objects are also larger, appear unfolded, and have blurred boundaries.

objects with the segmented results obtained by the 5 best-
performed segmentation algorithms to the user. The user then
selects the best algorithm by looking at their performance on
a few objects (Fig.5).

TABLE I
VARIOUS THRESHOLDING METHODS. THRESHOLDING TECHNIQUES AIM

TO CREATE A BINARY MASK FROM A GRAYSCALE IMAGE, WHICH
SEGMENTS OBJECTS FROM A BACKGROUND.

Algorithm Short description
Isodata A threshold is iteratively found based on the image histogram
Mean Uses the mean value of pixel intensities as threshold value
Minimum Takes a histogram of the image and smooths it repeatedly

until there are only two local maxima [18].
Otsu Based on maximizing the variance between two classes of

pixels which are separated by the threshold [19].
Triangle A geometric method assuming a maxima near one end of the

histogram and searches towards the other end [20].
Yen Based on Yen’s thresholding method [21]
Li An iterative method based on Li’s Minimum Cross Entropy

thresholding method [22]
Local Each threshold value for each pixel is the weighted mean of

the local neighborhood minus an offset value.
Median Uses the median value of pixel intensities as threshold value

Fig. 5. Results obtained by 5 different segmentation algorithm. Four objects
(each is represented in one row) are randomly selected from cluster iii of size
117. A set of 9 segmentation algorithms are initially applied on the object set
and 5 best segmentation algorithms (each in one column) are selected and the
results are presented to the user for the final selection.

For the selected algorithm, the framework repeatedly
chooses 5 different parameter sets, and presents the resulting
segmentation masks for selection by the user (Fig. 6). Using
deepening search space strategy the framework every time
narrows down to the search space around the selected setting

and provides 5 different choices for the user. This procedure
is repeated until receiving input from the user that satisfactory
segmentation results have been obtained. The framework per-
forms this iterative adjustment for every cluster separately, so
that the optimum settings can differ per cluster.

Fig. 6. Results obtained by the selected segmentation algorithm with 5
different parameter settings. Six objects (each is represented in one row) are
randomly selected from cluster iii of size 117. The selected segmentation
algorithm with 5 different settings is applied to the object sets and the results
are presented to the user from the loose to tight segmentation. User chooses
the best setting and every time the search space is narrow down to the region
around the selected setting.

D. Metric

To figure out how good the segmentation is for an ob-
ject (Oi), the framework starts from a very tight segmented
mask (Maski) and every time dilates the segmented mask
(Maski+1) and calculates the average intensity of the dif-
ference area between the original mask and the dilated one
di = mean{(Maski+1 −Maski)×Oi}(Fig. 7). This dilation
is repeated 5 more times and at each time the framework
calculates the average intensity of the difference area (di). In
general, the average intensity {di}5i=1 is every time decreased
and the segmentation line should be close to wherever the
decrease rate is maximised.

Fig. 7. Segmentation line should be close to wherever that the intensity drops
A: representative Pol II Ser5P clusters mid-section obtained by STEDD super-
resolution microscopy from a fixed sphere-stage zebrafish embryo. Each image
is of size 60 × 60 pixels. B, C, D: dilated morphologies. from left to right,
each time the morphology is dilated more.



Fig. 8. A subjective metric is used for evaluation. The results obtained by
our framework is compared by the results obtained after tuning the algorithm
by an expert. This evaluation is based on a human visual assessment.

V. EVALUATION

In this section, we present a biological case study, which
allowed us to evaluate our framework based on the following
two research questions:

• RQ1: How effective is our framework in improving the
quality of segmentation?

• RQ2: How much interactions the framework needs from
users to deploy the ML solutions?

We conduct all procedures on a laptop with Intel(R) Core(TM)
i7-8665U CPU 1.90GHz 2.11 GHz processor and 32.0 GB
RAM, using the Microsoft Windows operating system. The
code is written in Python, uses the “scikit-learn” package, and
is publicly released on here.

A. Experimental setup

We used input images recorded by STEDD microscopy
in a previous study [10], [23]. The images are maximum-
intensity projections of cell nuclei in fixed zebrafish embryos,
where Pol II Serine 5 phosphorylation was labeled by indirect
immunofluorescence (Fig. 1) The data set contained images of
60 nuclei. We extract an object set based on cropped region-
of-interest images of 60×60 pixel size, which are centered on
prominent groups of Pol II. We obtained a set of 148 objects
that were used for the further application of our framework.

To address the RQ1 we ask three biologists to use our
script for the adjustment of object segmentation. In line
with previous work, objects are automatically pre-categorised
in 2 clusters based on image features that do not rely on
segmentation (Fig. 4) [10]. For each cluster, 9 segmentation
algorithms (Table. I) are applied to the objects. Five of the
best-performing segmentation algorithms are selected using
the metric introduced in section IV-D. These selected algo-
rithm are then applied on a handful randomly-selected objects
and the results are then shown to the users (Fig. 5). The best-
performing algorithm is then selected by the user based on the
visual presentation of the few selected objects.

Afterwards, the framework proceeds with tuning the param-
eters of the selected algorithm by deepening space search.
Optimal parameter values are then obtained by further user

interactions (Fig. 6). Once the framework has satisfyingly
tuned the segmentation parameters within the current cluster
of objects, the same procedure is executed for the next cluster,
until all clusters are adjusted.

To establish a reference for the evaluation of our train-
ing results, we asked one expert to choose a segmentation
algorithm based on the object set globally (considering all
the clusters together) and manually tune the parameter of the
algorithm. The expert had a wide knowledge of segmentation
algorithms and was very familiar with the application data
and the adjustment for this expert took around 2 hours. The
results that we obtained from the expert, can be considered
as the best results that can be achieved by the use of the
existing resource. We then present 10 randomly selected pairs
of segmented objects obtained by our script and after manual
tuning by the expert to another expert to evaluate the quality
of segmentation1. Using an expert human to visually assess
the result is a kind of subjective metric. We provided four
choices for each comparison pair: (i) segmented image A is
better, (ii) segmented image B is better, (iii) both segmentation
results are almost equal and (iv) the evaluation of segmentation
depend on an additional consideration formulated by the
expert. We randomly alternated the assignment to choices A
and B to prevent bias in choice. The evaluation indicates that,
in the eyes of an expert, in 90% of cases the segmentations
obtained by our framework are better than or almost equal to
the segmentations obtained after manual tuning by an expert
(Table II).

TABLE II
EVALUATION RESULTS PERFORMED BY THE EXPERTS

Choice Percentage
Results obtained by our framework outperform 80%
Results obtained after expert tuning outperform 10%
Both results look almost similar 10%
It depends on ... 0%

To address the RQ2, we ask three biologists to use our script
and we record the time spent and the number of interactions
required for tuning the script. On average, the script converges
within 8 user interaction within 6 minutes (Table III). The
simplicity of our proposed framework was rated high (6 out
of 7, Table III).

VI. THREATS TO VALIDITY

The validity of our conclusions could be mainly compro-
mised by the example application and evaluation setting. We
use only example data from one type of biological sample,
recorded on one type of microscope. The experiment contains
different samples to account for day-to-day variability in
sample quality. However, image characteristics, e.g., intensity
distribution and image resolution, can differ fundamentally
between different microscopes. Adding data from other types
of samples and microscopes would strengthen the validity of
our findings.

1A sample questionnaire presented to the expert is available at ¡link¿



TABLE III
NUMBER OF INTERACTIONS AND THE DEDICATED TIME REQUIRED FOR CONVERGENCE

Total number of
interactions

dedicated time Simplicity
1: not simple
7: maximally simple

Segmentation algorithm
selected for cluster iii

Segmentation algorithm
selected for other objects

Case study 1 8 6 minutes 6 Isodata Ostu
Case study 2 10 7 minutes 6 Isodata Isodata
Case study 3 6 5 minutes 7 Local Ostu
Average 8 6 minutes 6

Three expert biologists working in the same laboratory
tested the framework by tuning segmentation on the object
set. Bias could be further reduced by increasing the number
of users, and also recruit users from different research groups.

The third threat to our experiment design is due to the
number of experts assessing the segmentation quality. We used
only one expert to visually assess the quality of segmentation
results. Assessment by a larger panel of experts would ensure
a more reliable and unbiased result.

VII. RELATED WORK

Our work is mainly related to the interactive approaches
with user-guided parameter selection. It is almost a decade
since interaction object segmentation has firstly emerged. The
early approaches are mostly formulated as energy minimiza-
tion tasks on a graph. An image is first represented as an
undirected graph, which can be defined by a joint probability
p. The goal is to assign a label to each pixel (0 represents the
background and 1 for the objects) in a way that the probability
p is minimized [24]–[27].

There have been some other interactive segmentation works
that require users to annotate the edges (extreme-left, extreme-
right, extreme-top and extreme-bottom) of objects. The con-
nection lines between edges represents boundary line. Training
on the annotated objects, the method can hopefully later detect
the boundaries of unseen objects [28], [29]. The region inside
the boundaries are considered as foreground (object) and the
outside area is labelled as background. There are several
major challenges regarding the transfer of these methods in
the biological subcellular segmentation tasks. Firstly, some
subcellular components cannot be inherently represented by
edges and secondly, the whole region inside the boundaries
sometimes is not the object, for example, objects with the
shape of doughnuts.

Recently, deep networks have been extensively used in the
interactive segmentation tasks [30], [31]. Some deep learning
tasks are on the basis of detecting the four edges, where for a
part of the dataset, users annotate the edges and the network is
later trained to detect the edges for unseen input [32]. There
are some other interactive deep network methods for image
segmentation [33], [34], where users should provide bounding
boxes for a part of the data set and a network is learned to
detect the bounding box for the rest of the dataset. These ap-
proaches are sometimes combined with reinforcement learning
which asks users to mark the foreground. These approaches
have been successfully used in CT/MRI image segmentation,

where the organ appears in similar shapes in all images.
In some studies [35], [36], the user inputs (bounding box
annotations) have been combined with the graph convolutional
networks (GCN). In the training phase, the manually-annotated
data is used and the GCN learns to represent an object with a
polygon around it. To refine the trained model, the predicted
polygon can be further adjusted by the user interaction.

However, there is a general limitation in the use of methods
on the basis of deep networks, which is the requirement of
annotated images. To avoid over-fitting, the annotated data
sets must be sufficiently comprehensive, which makes it even
more challenging. Providing such manually created training
annotations is time-consuming and requires the knowledge of
domain experts. The same limitation arises when a network
needs to be re-trained for new data sets, which typically also
requires additional annotation by experts [37]. There is also
a particular challenge in the transfer of these approaches to
biological image segmentation where the number of objects
that exists in one image can be very high. For example, some-
times a single image may contain 200 cells and it is practically
infeasible to annotate the bounding boxes or the edges. The
next limitation in regard to biological image segmentation is
the high degree of variety in object shapes, when the object
of interest appears in very complex object shapes with unclear
edges and boundaries (which is inherently very common in
biological subcellular components) [38]. Having reviewed the
literature, we realized that a practical approach for biological
segmentation is a method keeping the user interaction short
and simple while enabling adjustment for unseen data.

VIII. CONCLUSION

Detecting the different parts that build a biological cell is
one of the core tasks in the analysis of biomedical images.
There are some automated approaches that can automatically
detect the objects, however, the deployment of these algo-
rithms for the processing of unknown data sets poses a major
challenge in practical application. The main challenge is the
need for annotated objects, which can be provided by experi-
enced domain specialists, which is very labour expensive. In
this paper, we proposed a framework that enables object-type
specific adjustment of the segmentation algorithm within the
face of unseen data with a few user interactions. Underlying
this framework was a mapping function between object-
morphology feature space and specific algorithm settings. We
then applied this framework to a biological case study and



validated the performance and simplicity of our proposed
framework through the case study.

In the future work, we plan to explore how object morphol-
ogy feature space may affect the next step of our framework
and accordingly improve the feature space representation of
object set by adopting an interactive fashion instead of an
unsupervised manner. We also plan to assign an uncertainty
value to each segmented object and present the objects with
high certainty for user selection.

ACKNOWLEDGEMENT

This work is supported by the Helmholtz Association un-
der the joint research school “HIDSS4Health – Helmholtz
Information and Data Science School for Health” and
the Helmholtz program Natural, Artificial, and Cognitive
Information Processing (NACIP). HH was supported by
HIDSS4Health. We thank Irina Mamontova, Roshan Prizak
and Agnieszka Pancholi for help in conducting the case study.
We also thank Christopher Gerking for comments on our
manuscript.

REFERENCES

[1] J. Segal and C. Morris, “Developing scientific software,” IEEE Software,
vol. 25, no. 4, pp. 18–20, 2008.

[2] S. E. Walker, “Active learning strategies to promote critical thinking,”
Journal of athletic training, vol. 38, no. 3, p. 263, 2003.

[3] I. Arganda-Carreras, V. Kaynig, C. Rueden et al., “Trainable weka seg-
mentation: a machine learning tool for microscopy pixel classification,”
Bioinformatics, vol. 33, no. 15, pp. 2424–2426, 2017.

[4] S. Berg, D. Kutra, T. Kroeger et al., “Ilastik: interactive machine learning
for (bio) image analysis,” Nature Methods, vol. 16, no. 12, pp. 1226–
1232, 2019.

[5] E. Dougherty, Mathematical morphology in image processing. CRC
press, 2018, vol. 1.

[6] S. Cantaloube, K. Romeo, P. Le Baccon et al., “Characterization
of chromatin domains by 3d fluorescence microscopy: an automated
methodology for quantitative analysis and nuclei screening,” BioEssays,
vol. 34, no. 6, pp. 509–517, 2012.

[7] J. Yi, H. Tang, P. Wu, et al., “Object-guided instance segmentation for
biological images,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 07, 2020, pp. 12 677–12 684.

[8] S. Osterwald, K. I. Deeg, I. Chung, D. Parisotto, and othersn, “Pml in-
duces compaction, trf2 depletion and dna damage signaling at telomeres
and promotes their alternative lengthening,” Journal of cell science, vol.
128, no. 10, pp. 1887–1900, 2015.

[9] J. C. Caicedo, A. Goodman, K. W. Karhohs, B. A. Cimini, J. Ackerman,
M. Haghighi, C. Heng, T. Becker, M. Doan, C. McQuin et al., “Nucleus
segmentation across imaging experiments: the 2018 data science bowl,”
Nature methods, vol. 16, no. 12, pp. 1247–1253, 2019.

[10] A. Pancholi, T. Klingberg, W. Zhang, R. Prizak, I. Mamontova, A. Noa,
M. Sobucki, A. Y. Kobitski, G. U. Nienhaus, V. Zaburdaev et al.,
“Rna polymerase ii clusters form in line with surface condensation on
regulatory chromatin,” Molecular systems biology, vol. 17, no. 9, p.
e10272, 2021.

[11] Y. Chen, D. Ming, L. Zhao et al., “Review on high spatial resolution
remote sensing image segmentation evaluation,” Photogrammetric En-
gineering & Remote Sensing, vol. 84, no. 10, pp. 629–646, 2018.

[12] Y. J. Zhang, “A survey on evaluation methods for image segmentation,”
Pattern recognition, vol. 29, no. 8, pp. 1335–1346, 1996.

[13] Z. Wang, E. Wang, and Y. Zhu, “Image segmentation evaluation: a
survey of methods,” Artificial Intelligence Review, vol. 53, no. 8, pp.
5637–5674, 2020.

[14] A. A. Taha and A. Hanbury, “Metrics for evaluating 3d medical image
segmentation: analysis, selection, and tool,” BMC medical imaging,
vol. 15, no. 1, pp. 1–28, 2015.

[15] N. Dey, V. Rajinikanth, A. S. Ashour, and J. M. R. Tavares, “Social group
optimization supported segmentation and evaluation of skin melanoma
images,” Symmetry, vol. 10, no. 2, p. 51, 2018.

[16] J. Pont-Tuset and F. Marques, “Supervised evaluation of image segmen-
tation and object proposal techniques,” IEEE transactions on pattern
analysis and machine intelligence, vol. 38, no. 7, pp. 1465–1478, 2015.

[17] H. Zhang, J. E. Fritts, and S. A. Goldman, “Image segmentation
evaluation: A survey of unsupervised methods,” computer vision and
image understanding, vol. 110, no. 2, pp. 260–280, 2008.

[18] J. M. Prewitt and M. L. Mendelsohn, “The analysis of cell images,”
Annals of the New York Academy of Sciences, vol. 128, no. 3, pp. 1035–
1053, 1966.

[19] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp.
62–66, 1979.

[20] G. W. Zack, W. E. Rogers, and S. A. Latt, “Automatic measurement
of sister chromatid exchange frequency.” Journal of Histochemistry &
Cytochemistry, vol. 25, no. 7, pp. 741–753, 1977.

[21] M. Sezgin and B. Sankur, “Survey over image thresholding techniques
and quantitative performance evaluation,” Journal of Electronic imaging,
vol. 13, no. 1, pp. 146–165, 2004.

[22] C. H. Li and C. Lee, “Minimum cross entropy thresholding,” Pattern
recognition, vol. 26, no. 4, pp. 617–625, 1993.

[23] L. Hilbert, “Analysis of RNA polymerase II phosphorylation in
STimulated Emission Double Depletion (STEDD) microscopy images,”
Jun. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.4973062

[24] X. Bai and G. Sapiro, “Geodesic matting: A framework for fast
interactive image and video segmentation and matting,” International
journal of computer vision, vol. 82, no. 2, pp. 113–132, 2009.

[25] Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal bound-
ary & region segmentation of objects in nd images,” in Proceedings
eighth IEEE international conference on computer vision. ICCV 2001,
vol. 1. IEEE, 2001, pp. 105–112.

[26] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman,
“Geodesic star convexity for interactive image segmentation,” in 2010
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. IEEE, 2010, pp. 3129–3136.

[27] S. Cagnoni, A. B. Dobrzeniecki, R. Poli, and J. C. Yanch, “Genetic
algorithm-based interactive segmentation of 3d medical images,” Image
and Vision Computing, vol. 17, no. 12, pp. 881–895, 1999.
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