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Many biological oscillators share two properties: they are subject to sto-
chastic fluctuations (noise) and they must reliably adjust their period
to changing environmental conditions (entrainment). While noise seems to
distort the ability of single oscillators to entrain, in populations of uncoupled
oscillators noise allows population-level entrainment for a wider range of
input amplitudes and periods. Here, we investigate how this effect depends
on the noise intensity and the number of oscillators in the population.
We have found that, if a population consists of a sufficient number of
oscillators, increasing noise intensity leads to faster entrainment after
a phase change of the input signal ( jet lag) and increases sensitivity to
low-amplitude input signals.
1. Introduction
Many cellular processes show oscillatory behaviour. This includes circadian
clocks [1], cardiac pacemakers [2] and various signalling proteins like p53 [3] and
NF-κB [4]. Although the rhythms generated by these systems manifest on different
timescales and have different functions within the organism, in terms of a math-
ematical representation, they can be modelled as a limit cycle oscillator that
consists of a negative feedback loop with a delay [5]. Furthermore, cellular
oscillators constantly adjust their phase and period based on the changes in the
environment, thereby achieving entrainment [6]. In this way, cellular processes
can be reliably timed with respect to environmental conditions. Cellular
processes, including oscillators, are frequently affected by noise stemming from a
low number of reacting molecules involved in the feedback regulation [7].
In consequence, a low number of molecular interactions occur at stochastically dis-
tributed times, resulting in stochastic variations in the periodic gene expression.
Although noise and entrainment are individually recognized to influence cellular
oscillators, it remainsunclearwhethernoise is generallydetrimental to entrainment,
or might in fact be co-opted in the entrainment of cellular oscillators.

The circadian clock is one of the most prominent biological oscillators and
ensures the correct timing of various biological processes with respect to the
time of the day [8]. The circadian clock in mammals is organized hierarchically
with a central peacemaker of highly coupled oscillators in the suprachiasmatic
nucleus (SCN) and weakly coupled or uncoupled oscillators in the peripheral
tissues [9]. While a lot of research focused on the dynamics of the highly coupled
SCN cells, the limited coupling in peripheral tissues results in distinctly different
dynamics that might be better explained by an uncoupled population model.
For example, the weaker coupling between peripheral clocks allows entrainment
for a wider range of input periods [10] and additional external cues such as
changes in ambient temperature [11]. The population of uncoupled oscillators is
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Figure 1. A model of population-level entrainment of uncoupled cellular oscillators. (a) A minimal oscillator model consists of three variables (X, Y, Z) connected in
a negative feedback loop. Input, e.g. light in the case of the circadian clock, is implemented via addition to X. (b) The model from (a) represents a single-cell
oscillator in a population. A number of oscillators are combined into a population that is driven by a square signal with period T and amplitude I. The input square
signal switches between a high state and a low state, e.g. day and night of the day–night cycle. The output is calculated as the mean of the output of the
individual oscillators and, if entrained, oscillates with the same period T as the input signal. We aim to explore the effect of changing population size
(number of oscillators, n) and noise intensity (σ) on the population-level entrainment. (c) Example results of numerical simulations for a single-cell oscillator
(n = 1) and two populations of different sizes (n = 10, 100). A higher population size results in a smoother periodic signal and thus reduces stochastic fluctuations.
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also relevant in the correct analysis of the circadian biolumines-
cence assays [12,13]. Here, a better understanding of the
dynamics at the population level in the presence of noise
would help in inferring the single-cell behaviour from the
population-level recordings. For those reasons, it is of great
interest to better understand the significance of noise in the
entrainment of uncoupled stochastic oscillators.

The implications of noise on the population-level entrain-
ment are, however, still poorly understood. In this study, we
examine the effect of noise on the population-level entrainment
of uncoupled stochastic oscillators for different population
sizes (number of oscillators), noise intensities and amplitudes
and periods of the input signal. Previous work found that
noise allows population-level entrainment to a wider range
of input amplitudes and periods than a single stochastic
or deterministic oscillator [14]. We extend those findings by
examining the change in the entrainment for varying popu-
lation size and noise intensity. In addition, we examine how
different levels of noise influence the response to a perturbing
pulse under constant pacing conditions (phase response curve
(PRC)) and the recovery from a phase shift in the input signal
( jet lag). We have found that noise expands the range of input
amplitudes and periods for which entrainment occurs, with an
optimal noise intensity for a given number of oscillators in
the population. In our simulations, noise also increases the
response of the oscillator population to a perturbation and
shortens jet lag. Finally, we used the canonical amplitude-
phase and Van der Pol models, which represent the class of
sinusoidal and relaxation limit cycle oscillators, respectively,
to show that we come to the same conclusions. Thus these find-
ings might be interesting not only for the modelling of cellular
oscillators but also for the wider class of natural and bio-
inspired technical systems with uncoupled or loosely coupled
oscillators under the influence of external triggers and noise.
2. Results
2.1. Model of a population of uncoupled stochastic

oscillators
We wish to examine how molecular noise affects the popu-
lation-level entrainment of a population of uncoupled
cellular oscillators. For this purpose, we use a minimal
Kim–Forger model [15] with additive light input and multi-
plicative noise terms, which represent the molecular noise
stemming from the discrete nature of cellular chemical inter-
actions [16]. We have shown previously that such a simple
structure captures the entrainment dynamics in a circadian
bioluminescence reporter assay with high precision while
reducing the number of adjustable model parameters [17].
The core model consists of three variables connected in a
negative feedback loop and represents the dynamics of one
cellular oscillator (figure 1a). This simplified Kim–Forger
model (equation (4.1)) has one free parameter for which
we assigned a fixed value to obtain a limit cycle oscillator



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220781

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 J

an
ua

ry
 2

02
3 
with high-amplitude oscillations (electronic supplementary
material, figure S1). For convenience, the model is time-
scaled to oscillate with a unit period if noise terms and
input signals are set to zero. To obtain a population-level
output from the single-cell model, we repeat the simulation
n times and calculate the mean over the individual trajec-
tories, thereby representing an experimental recording from
a population of uncoupled identical stochastic oscillators
that are driven by the same input signal (figure 1b). An intui-
tive strategy to minimize the stochastic fluctuations at the
population level is to increase the number of oscillators in
the population (figure 1c). This approach illustrates that
even a not obviously stochastic population recording stems
from inherently stochastic oscillators. This stochasticity may
influence the population behaviour, even if not apparent
after averaging over the population of oscillators.

2.2. Noise widens range of entrainment in oscillator
populations

We used phase coherence (PC) as a continuous metric of
entrainment of the oscillator population to the external periodic
signal (equation (4.10), electronic supplementary material,
figure S2). Arnold tongues visualize how this entrainment
depends on the amplitude and period of the input signal
[18,19]. In general, a greater amplitude of the input signal
increases the range of periods for which the system is entrained
(indicated by a PC close to 1), resulting in the typical, tongue-
shaped regions of entrainment (figure 2a). It has been
previously shown that if a population mean is considered,
the Arnold tongue is wider in comparison with the Arnold
tongue estimated with a single stochastic or deterministic
model [14]. We were interested in how this widening of the
entrainment range depends on the noise intensity and the
number of oscillators used to construct the population mean.
To quantify the Arnold tongues with a single number, we
calculate the average PC of the tongue (figure 2a). Applying
this metric to the output of a deterministic model (σ = 0) and
a stochastic model (σ = 0.005), we found that the range of
entrainment for the deterministic system is lower than for a sto-
chastic population of 1000 oscillators (figure 2a). This is in line
with previously published findings [14]. However, if we con-
sider a single stochastic oscillator, the entrainment area drops
to a lower value close to the deterministic model (figure 2a).
This suggests that noise must be compensated for with a suffi-
ciently large population size to allow the widening of the
Arnold tongue by noise.

We extended this observation by measuring the entrain-
ment area for four different population sizes and seven noise
intensities (figure 2b, electronic supplementary material,
figure S3). Using the deterministic case as a reference, we
observed that for a single oscillator (n = 1) the range of entrain-
ment decreases with increasing noise intensity, showing the
detrimental effect of noise when only a single oscillator is con-
sidered. With increasing population size (n > 1), however, an
optimal value of noise intensity exists, for which the range of
entrainment is maximal. With increasing population size, this
optimal noise intensity moves to higher values, and also the
maximal range of entrainment at this optimum noise intensity
is increased. Our results suggest an optimal noise intensity for
the entrainment of a population of a given size.When this opti-
mum noise intensity is exceeded, the entrainment capacity is
again compromised.
To better understand how the observed population-level
effect relates to the dynamics of the individual oscillators in
the population, we used population phase coherence (PPC) as
a metric of desynchronization among the individual oscillators
within the population (equation (4.11), electronic supplemen-
tary material, figure S4). We found that with increasing noise
intensity the PPC steadily decreases, indicating progressively
more desynchronization among the individual oscillators
(figure 2c, electronic supplementary material, figure S5).
A moderate desynchronization of the individual oscillators
thus supports the population-level entrainment; however, the
amplitude of the population mean is progressively less promi-
nent with increasing noise in comparison with the amplitude
of the individual oscillators in the population.

To understand how a given population of cellular oscil-
lators (cells) might be tuned towards optimal entrainment,
we investigated a hypothetical case where a total volume V
of cell material is available, but the number of cells (population
size, n) and their individual system size (V) can change. In
other words, we start with one big cell (V ¼ V) that is sub-
sequently divided into many small cells (V ¼ V=n) while the
total volume V remains constant. Here, the noise intensity (σ)
depends on the system size of the individual cells (V) as
s ¼ 1=

ffiffiffiffi
V

p
. Our simulation results suggest an optimal popu-

lation size for each total volume (figure 2d, electronic
supplementary material, figure S6). Specifically, with increas-
ing total volume, the maximal range of entrainment occurs at
a higher population size and the average PC is also larger.
In other words, a higher total volume can support a higher
number of noisy oscillators, which in turn allows the
population to take advantage of high noise intensities.

For completeness, we also simulated the possible effect of
heterogeneity in the population on the population-level
entrainment, thus assessing whether cell variability would
have a similar effect as the intrinsic noise described above.
In this experiment, we simulated a population of 1000 deter-
ministic oscillators with varying values of the free parameter
A. The parameter values for the population were drawn from
a normal distribution with mean value A0 (default value of
parameter A) and standard deviation σ (noise intensity).
We found that the cell variability also increases the range of
entrainment (electronic supplementary material, figures S7
and S8) similarly to the intrinsic noise with increasing noise
intensity increasing also the range of entrainment.
2.3. Noise increases phase response to perturbations
We also assessed whether noise can change the responsiveness
of the population of uncoupled oscillators to perturbations.
This can be explored using PRCs that plot the change in the
oscillator phase caused by a step pulse as a function of the
time during the oscillation cycle at which the pulsewas applied
[20,21]. In circadian research, the PRCs are often characterized
based on their amplitude, which represents the extent of the
pulse-induced phase shift, as type 1 or type 0. Type 1 PRCs
exhibit relatively small phase shifts and appear continuous in
the PRC plot, whereas type 0 PRCs show large phase shifts
and appear visually discontinuous [20,21]. We have found
that the PRC amplitude increases markedly not only with the
increasing amplitude of the input signal but also with increas-
ing noise intensity (figure 3). Specifically, for low input
amplitude and low noise intensity, we observed relatively
small phase shifts (type 1 PRC, figure 3a,b,d). As expected,
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when we increased the input amplitude, the phase shifts also
increased. Interestingly, we observed the same effect also by
increasing the noise intensity. For high noise intensities, we
observed large phase shifts (type 0 PRC) regardless of the
amplitude of the input signal (figure 3c,f,h). Accordingly,
increasing noise intensity allows the transition from low-
amplitude (type 1) to high-amplitude (type 0) PRC, even if
the input amplitude remains low.
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2.4. Noise allows faster recovery after jet lag
We also explored the effect of a varying noise intensity on the
re-entrainment to a persistent phase shift in the input signal,
or ‘recovery from jet lag’ (figure 4). In these simulations,
the population is first entrained by a regular input cycle
representing a day–night cycle. After the output of the popu-
lation is phase-locked to the input signal, an abrupt shift in
the phase of the input signal is introduced, and the time
until the population output is locked to the new cycle is
measured (electronic supplementary material, figure S9).
We found that noise shortens this time, allowing faster
recovery from jet lag. This is well visible when the input
amplitude is low (figure 4a). With increasing input amplitude
(figure 4b,c) re-entrainment to the new cycle is fast for all
noise intensities, so the effect of the increasing noise is not
as apparent. Accordingly, noise allows faster recovery from
jet lag, especially if the input amplitude is low.
2.5. Noise facilitates the entrainment of limit cycle
oscillators, but not of noise-induced oscillators

To verify that the observed phenomena are not only a prop-
erty of a negative feedback cellular oscillator but rather a
general property of a limit cycle oscillator, we repeated all
our experiments with the canonical Van der Pol model [22].
The Van der Pol model is a prototypic abstraction for limit
cycle oscillators and is used in various fields in science
and engineering [23], including biological oscillators such
as circadian clocks [24] and cardiac pacemakers [25]. We
used the Van der Pol model with additive input, noise
terms and parameters as used previously to study the
entrainment of a stochastic oscillator [26]. We explored the
behaviour of the Van der Pol model under two different par-
ameter sets, one corresponding to a limit cycle oscillator and
one corresponding to a noise-induced oscillator (figure 5a).
The noise-induced oscillator is a damped oscillator that gen-
erates sustained rhythms only in the presence of noise [27,28].
We found that the entrainment dynamics for the limit
cycle model are equivalent to the results obtained with the
Kim–Forger model in the previous parts of the manuscript.
In particular, with increasing noise intensity and sufficient
population size we can achieve enlarged Arnold tongues
(figure 5b, electronic supplementary material, figure S10),
increased amplitudes in PRCs (electronic supplementary
material, figure S11) and faster recovery from jet lag (elec-
tronic supplementary material, figure S12A). By contrast
to the limit cycle oscillator, the noise-induced oscillator
showed wide Arnold tongues (figure 5c, electronic sup-
plementary material, figure S13), high-amplitude PRCs
(electronic supplementary material, figure S14) and short jet
lags (electronic supplementary material, figure S12B) already
for the deterministic model with zero noise intensity.

Limit cycle oscillators can be classified as relaxation
oscillators, which generate non-sinusoidal oscillations, and
sinusoidal oscillators, which have a harmonic limit cycle (elec-
tronic supplementary material, figure S15). This distinction is
important in the study of entrainment as different classes of
oscillators react differently to external forcing. For example,
relaxation oscillators allow for faster entrainment [29]. We
have already explored the behaviour of the relaxation limit
cycle oscillator using the Van der Pol model above and were
interested if the same results can also be achieved with the
amplitude-phase model [10], a generic model for sinusoidal
limit cycle oscillations (electronic supplementary material,
figure S15). Repeating all assessments also for this model, we
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arrived at the same results, including increased average PC and
enlarged Arnold tongues (electronic supplementary material,
figures S16 and S17), increased amplitude in PRCs (electronic
supplementary material, figure S18) and faster recovery from
jet lag (electronic supplementary material, figure S12C). We
thus conclude that the observations made in this study also
work for a broader class of limit cycle oscillators that are subject
to Gaussian noise but do not apply to noise-induced oscillators
that generate only damped oscillations in the deterministic case.
3. Discussion
In this work, we explored the entrainment of a population of
uncoupled stochastic oscillators represented by a minimal
model of the circadian clock. We found that noise allows for
population-level entrainment to a wider range of input signal
periods and amplitudes. Noise also facilitates a larger response
to external stimuli and faster recovery from jet lag. These effects
emerge specifically at the population level, and cannot be
observed in single oscillators. We used the canonical
amplitude-phase and Van der Pol models to show that this be-
haviour emerges also for generic limit cycle oscillators, but not
for noise-induced oscillators without a deterministic limit
cycle. In the field of cellular oscillators and especially circadian
clocks, these findings should contribute to a better understand-
ing of the population behaviour of cells, for example in cell
cultures, and how the population behaviour relates to the
behaviour of single cells. Since our results seem to apply to var-
ious limit cycle oscillator systems, the results might not be
limited to cellular oscillators but could be potentially applied
to any domain where a population of noisy oscillators is
under periodic pacing.

The results described in this work are the consequence
of averaging the signals from the individual stochastic
oscillators, which have a deterministic limit cycle and lack
coupling. The results are thus mainly relevant for systems
where only the average behaviour is of importance and
synchronization among the individual cells is not crucial.
Prominent examples of such systems are peripheral circadian
clocks [9] and NF-kB signalling [30]. We observed that
increasing noise intensity decreases the coherence of the indi-
vidual oscillators but increases the population-level response
to the changes in the input signal. The desynchronization
within the population has, however, the consequence
of decreasing the population-level oscillation amplitude in
reference to the amplitude of the individual oscillators. We
observed this effect for the stochasticity in the sense of the
chemical master equation (Kim–Forger model) as well as
for general sinusoidal (amplitude-phase model) and relax-
ation (Van der Pol) oscillator models with generic additive
Gaussian noise terms. Therefore, we would expect similar
effects also in other oscillator systems with uncoupled or
loosely coupled oscillators with independent noise sources.

Previouswork has shown that noisewidens the population-
level range of entrainment [14]. However, it has also been
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shown that, in the case of a single stochastic oscillator, the
range of entrainment decreases with increasing noise inten-
sity [31]. We have extended those findings by exploring the
entrainment for a number of population sizes and noise
intensities and found that for each population size, an opti-
mal noise intensity exists. This existence of an optimal noise
intensity is a typical characteristic of a phenomenon known
as stochastic resonance [32]. The term stochastic resonance
is traditionally used in neuroscience to describe improved
detection of weak signals in threshold-like systems [33]. The
term stochastic resonance is also used more generally to
describe improvement in output performance of a noisy
system in various disciplines including cell biology, ecology
and physics [34]. In our system, noise improves the popu-
lation-level entrainment but only to the point where the
population size is sufficiently large to compensate for the
noise-induced fluctuations at the population-level read-out.
Thus, in comparison with the previous studies, we showed
not only that noise widens the range of entrainment, but
also that there exists an optimal value of the noise intensity,
for which the range of entrainment is the widest.

The noise intensity (σ) is inversely related to the system
size parameter that represents the number of interacting mol-
ecules (V): lower V gives higher σ and vice versa. We took
advantage of this physical interpretation and perform a
series of experiments, where the total number of molecules
(V) is fixed and divided equally among n cells. We found
that there is an optimal number of cells, for which the
range of entrainment is the widest. In a general system, we
could interpret V as the total amount of available resources
or as a total price of a system and V as the number of
resources taken by a single constituent unit of that system.
We showed that, if the goal is maximal sensitivity in entrain-
ment to input signals, it is more advantageous to distribute
the resources to several noisy units rather than maintain a
single unit with minimal noise. However, when the popu-
lation size is increased beyond the optimum, the individual
units become too noisy and the ability of entrainment is
again compromised.

Biological cells are not only subject to intrinsic molecular
noise, but also to external noise that stems from the heterogen-
eity of the population [35,36]. We implemented cell variability
by varying parameter values of the individual oscillators and
observed that population heterogeneity also leads to a wider
range of population-level entrainment. This corresponds to the
previous observations that cell variability allows the population
to entrain robustly under awider range of inputs [30]. However,
cell variability also leads to a plethora of dynamic behaviours
that is beyond the focus of this paper. The individual cells can
exhibit widely different waveforms and some might even
cross the Hopf bifurcation or exhibit chaotic behaviour [37],
which presents a substantial challenge in the correct
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interpretation of the results. Therefore, our results on the cell
variability should be considered rather preliminary and will
be developed in detail in our future work.

In this work, we showed that the amplitude of the PRCs
and speed of recovery from jet lag depends not only on the
amplitude of the input signal, as described previously [38],
but also on the intensity of the intrinsic noise. In our
experiments, higher noise intensities led to higher PRC
amplitude and shorter jet lags. These results might be par-
ticularly interesting in the context of the entrainment
dynamics of the circadian clock. In mammals, the clock is
thought to be organized hierarchically, with a central pace-
maker of highly coupled oscillators in the SCN and less
coupled peripheral oscillators that are entrained by signals
from the SCN [9]. Pharmacologically increased noise in the
SCN cells shortens jet lag even without explicitly weakening
coupling among the cells [39]. This hints at the possible
relevance of our results also to the domain of coupled oscil-
lators. The coupling also provides the SCN with a certain
level of resistance to noise and external perturbation [10,11].
Our results show that for increasing noise intensities the
population becomes very sensitive to the input signals. This
property would not seem useful to the SCN in maintaining
a steady rhythm but might be advantageous for peripheral
clocks that need to adjust to a manifold of external cues.

The positive effect of noise on the circadian clock is usually
illustrated by noise-induced oscillations in the vicinity of aHopf
bifurcation [27,28]. From circadian data, however, it is often
impossible to infer whether the circadian rhythms are formed
by limit cycle or noise-induced oscillators [40]. It has been
shown that a noise-induced oscillator can be entrained to a
wider range of input amplitudes than a limit cycle oscillator
[41]. We studied a general Van der Pol model with additive
light and noise terms andwith two parameter sets representing
limit cycle and noise-induced oscillations [26]. Our results
showed that, indeed, noise-induced oscillators entrain easier
than limit cycle oscillators, not only at the single-cell level but
also at the population level. However, the speed and range of
entrainment for the limit cycle oscillator improve with increas-
ing noise, whereas the entrainment properties of the noise-
induced oscillator remain unchanged. For high noise intensities
and sufficient population sizes, the entrainment dynamics of
the limit cycle and noise-induced oscillators in fact become
increasingly similar in terms of the wide range of entrainment,
high-amplitude PRCs and short jet lags.

Another important application of our results is in inferring
the single-cell dynamics from the population-level biolumines-
cence assays. These assays are relatively cheap and fast
to conduct and lend themselves well to high-throughput
screening of chemical compounds and mutants [42]. It has
been shown that the cells in the bioluminescence assays
behave as uncoupled oscillators [12,13]. Bioluminescence
assays record a population mean over thousands of cells, so
caution is required in making conclusions about single-cell
behaviour. A common example of a discrepancy between
the population-level and single-cell behaviour is the desynchro-
nization of the cells in constant darkness that lead to
the absence of oscillations at the population level, even
though single-cell oscillations persist [43]. In the context of cir-
cadian entrainment, assays based on zebrafish cell lines are
especially suitable because zebrafish cells are directly light-
responsive [44]. These assays were also previously modelled
as uncoupled oscillators, reproducing even detailed aspects of
the experimental data [17]. Considering that noise can be
pharmacologically enhanced in cell cultures [45], zebrafish
assays might be a suitable experimental system to investigate
some of the presented results in further in vitro experiments.
4. Methods
4.1. Mathematical models
We used three limit cycle oscillator models to explore the effects of
noise on population-level entrainment: the Kim–Forger model as a
model of a biological negative feedback oscillator, the Van der Pol
model as a generic model of relaxation oscillations and the
amplitude-phase model as a model of sinusoidal oscillations.
Additionally, to also quantify the necessity of the existing limit cycle
on the observed phenomena, we explored the Van der Pol model in
an additional regime where it behaves as a damped oscillator.

4.1.1. Kim–Forger model
The scaled Kim–Forger model (see electronic supplementary
material for derivation) reads [15,46]

dX
dt

¼ fðZ, AÞ � X þ I, ð4:1aÞ
dY
dt

¼ X � Y, ð4:1bÞ
dZ
dt

¼ Y� Z ð4:1cÞ

and fðZ, AÞ ¼ 1� Z
A

Z
A � 1

0 Z
A . 1

(
, ð4:1dÞ

where X, Y, Z are the concentrations, A is the free parameter and I
is the input signal. Considering that each term in equation (4.1)
represents a chemical reaction, we can construct a chemical reac-
tion model as

no: reaction transition transition rate

1 ! x x ! xþ 1 Vkfrðz, VAÞ
2 x ! x ! x� 1 x
3 ! x x ! xþ 1 VI
4 ! y y ! yþ 1 x
5 y ! y ! y� 1 y
6 ! z z ! zþ 1 y
7 z ! z ! z� 1 z

ð4:2Þ

where x, y, z are the numbers of molecules and V is the system
size parameter that determines the overall number of molecules
in the system [47–49]. The number of molecules thus relate to
the concentrations as x ¼ VX, y ¼ VY, z ¼ VZ. As equation
(4.2) is expressed in molecular numbers, and not concentrations
as equation (4.1), also the transition rates must be scaled by the
system size parameter V. This also applies to parameter A that
has units of concentration and must be thus scaled by V as well.

The chemical reactionmodel in equation (4.2) can be simulated
using the exact Gillespie method [50,51] that provides a correct sol-
ution for the chemical master equation. The Gillespie method is,
however, computationally expensive for the increasing system
size parameter V (electronic supplementary material, figure S19).
For sufficiently large V, the discrete model can be approximated
by the chemical Langevin equation [16] as

dX
dt

¼ fðZ, AÞ � X þ I

þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðZ, AÞ

q
j1 �

ffiffiffiffi
X

p
j2 þ

ffiffi
I

p
j3

� �
, ð4:3aÞ

dY
dt

¼ X � Yþ s
ffiffiffiffi
X

p
j4 �

ffiffiffiffi
Y

p
j5

� �
ð4:3bÞ

and
dZ
dt

¼ Y� Zþ s
ffiffiffiffi
Y

p
j6 �

ffiffiffiffi
Z

p
j7

� �
, ð4:3cÞ
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where X, Y, Z are the molecular concentrations, ξi are the indepen-
dent Wiener processes and σ is the noise intensity that scales with
the system size as [27]

s ¼ 1ffiffiffiffi
V

p : ð4:4Þ

The stochastic differential equation (SDE) model was simu-
lated using the Euler–Maruyama method with an integration
step dt = 0.001. The integration step is sufficiently low to give
comparable results with an accurate deterministic adaptive
method for σ = 0 (electronic supplementary material, figure
S20) as well as the exact Gillespie method for higher values of
σ (electronic supplementary material, figure S21). The main dis-
advantage of the chemical Langevin equation is that for high
noise intensities the concentrations might reach negative
values, which make the evaluation of the terms under the
square roots impossible in the real domain [52]. In our equation
this problem relates mainly to the variable X, which oscillates
close to 0 around the value given by the free parameter A. We
thus set A = 0.1, which is high enough for X not to hit 0 also
for moderate levels of noise but still low enough not to give
the limit cycle (electronic supplementary material, figure S1).
For this value of A, the chemical Langevin equation starts to
break down for system size V , 1000 (electronic supplementary
material, figure S19). For those values of V, the Gillespie method
was used as a fallback.

4.1.2. Van der Pol model
As a generic model of a relaxation oscillator, we used the Van der
Pol model in the form with external input and noise as used
previously to study the entrainment of a stochastic oscillator [26]

dX
dt

¼ Yþ sj1 ð4:5aÞ

and

dY
dt

¼ �(BX2 � d)Y� X þ I þ sj2, ð4:5bÞ

where σ is the noise intensity, ξi are the independent Wiener pro-
cesses, I is the input and d and B are the free parameters that we
set according to the previous study [26] to represent a relaxation
limit cycle oscillator (d = 2, B = 10) and a noise-driven oscillator
(d =−0.1 and B = 1). This model, including its parameters, was
adapted from a previous study on the entrainment of stochastic
oscillators [26]. The Van der Pol model is a generic model
whose equations do not have a direct biological interpretation.
Therefore, the noise terms are purely additive and represent a
general stochastic disturbance rather than specifically molecular
noise as in the Kim–Forger model. The SDE model was simu-
lated using the Euler–Maruyama method with an integration
step dt = 0.001.

4.1.3. Amplitude-phase model
As a generic model of an oscillator with sinusoidal oscillations,
we used the amplitude-phase model [53]

_X ¼ lX(A� R)� vYþ I þ sj1, ð4:6aÞ
_Y ¼ lY(A� R)þ vX þ sj2 ð4:6bÞ

and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
, ð4:6cÞ

where σ is the noise intensity, ξi are the independent Wiener pro-
cesses, I the is input, λ is the time rate of the return to the limit
cycle, A is the amplitude and ω is the angular frequency. The free
parameters we set λ =A = ω = 1 according to the previous study
[10]. Similar to the Van der Pol model, the amplitude-phase
model is a genericmodelwhose equations do not have a direct bio-
logical interpretation. Therefore, the noise terms are purely
additive and represent a general stochastic disturbance, rather
than specifically molecular noise as in the Kim–Forger model.
The SDE model was simulated using the Euler–Maruyama
method with an integration step dt = 0.001.
4.2. Model input
As the model input, we consider a square function

I ¼ Imax 0 � (t mod T) , T
2

0 T
2 � (t mod T) , T

�
, ð4:7Þ

where T is the input period and Imax is the input amplitude.
4.3. Model output
A population of uncoupled oscillators was simulated by calculat-
ing a mean of repeated independent numerical simulations as

X ¼ 1
n

Xn
i¼1

Xi, ð4:8Þ

where n is the number of oscillators in the population.
4.4. Metrics of entrainment
The complex-valued order parameter for a population of
oscillators is defined as [54,55]

r � eic ¼ 1
n

Xn
j¼1

eifj , ð4:9Þ

where r is the degree of coherence, ψ is the collective phase, ϕj is
the phase of the individual oscillators in the population and n is
the number of oscillators in the population. The degree of coher-
ence r is a number between 0 and 1, where r = 1 indicates that all
oscillators are in the same phase and r = 0 indicates complete
incoherence when the individual oscillators average out at
the population-level mean. Based on the order parameter, we
defined two metrics of entrainment: PC and PPC.

PC quantifies the population-level entrainment after the
individual trajectories were averaged

PC ¼ 1
N

XN
k¼1

eiwk

�����
�����, ð4:10Þ

where N is the number of periods of the input signal, and wk is
the time location of the population-level peak in kth cycle of
the input signal. The PC ranges from 0 to 1. A value of 1
means that the peak of the population-averaged signal occurs
exactly at the same time in every cycle. Values close to 0 indicate
an unentrained signal with peaks occurring randomly within the
cycle (electronic supplementary material, figure S2).

PPC quantifies the desynchronization of the individual
oscillators in the population and is equivalent to r from equation
(4.9) as

PPC ¼ 1
n

Xn
j¼1

eifj

������
������, ð4:11Þ

where n is the number of oscillators in the population, and ϕj is
the time location of the peak for jth oscillator in the population.
The precision of this metric can be increased by calculating the
circular mean of the population phase coherence over several
periods of the input signal. The final value ranges from 0 to
1. A value of 1 indicates that peaks of all individual oscillators
occur at the same time within one input cycle. Values close to
0 indicate a highly disperse population where each oscillator
peaks at a different time of a cycle (electronic supplementary
material, figure S4).
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