42 research outputs found

    Anticoagulant rodenticides on our public and community lands: spatial distribution of exposure and poisoning of a rare forest carnivore.

    Get PDF
    Anticoagulant rodenticide (AR) poisoning has emerged as a significant concern for conservation and management of non-target wildlife. The purpose for these toxicants is to suppress pest populations in agricultural or urban settings. The potential of direct and indirect exposures and illicit use of ARs on public and community forest lands have recently raised concern for fishers (Martes pennanti), a candidate for listing under the federal Endangered Species Act in the Pacific states. In an investigation of threats to fisher population persistence in the two isolated California populations, we investigate the magnitude of this previously undocumented threat to fishers, we tested 58 carcasses for the presence and quantification of ARs, conducted spatial analysis of exposed fishers in an effort to identify potential point sources of AR, and identified fishers that died directly due to AR poisoning. We found 46 of 58 (79%) fishers exposed to an AR with 96% of those individuals having been exposed to one or more second-generation AR compounds. No spatial clustering of AR exposure was detected and the spatial distribution of exposure suggests that AR contamination is widespread within the fisher's range in California, which encompasses mostly public forest and park lands Additionally, we diagnosed four fisher deaths, including a lactating female, that were directly attributed to AR toxicosis and documented the first neonatal or milk transfer of an AR to an altricial fisher kit. These ARs, which some are acutely toxic, pose both a direct mortality or fitness risk to fishers, and a significant indirect risk to these isolated populations. Future research should be directed towards investigating risks to prey populations fishers are dependent on, exposure in other rare forest carnivores, and potential AR point sources such as illegal marijuana cultivation in the range of fishers on California public lands

    Patterns of Natural and Human-Caused Mortality Factors of a Rare Forest Carnivore, the Fisher (Pekania pennanti) in California.

    Get PDF
    Wildlife populations of conservation concern are limited in distribution, population size and persistence by various factors, including mortality. The fisher (Pekania pennanti), a North American mid-sized carnivore whose range in the western Pacific United States has retracted considerably in the past century, was proposed for threatened status protection in late 2014 under the United States Endangered Species Act by the United States Fish and Wildlife Service in its West Coast Distinct Population Segment. We investigated mortality in 167 fishers from two genetically and geographically distinct sub-populations in California within this West Coast Distinct Population Segment using a combination of gross necropsy, histology, toxicology and molecular methods. Overall, predation (70%), natural disease (16%), toxicant poisoning (10%) and, less commonly, vehicular strike (2%) and other anthropogenic causes (2%) were causes of mortality observed. We documented both an increase in mortality to (57% increase) and exposure (6%) from pesticides in fishers in just the past three years, highlighting further that toxicants from marijuana cultivation still pose a threat. Additionally, exposure to multiple rodenticides significantly increased the likelihood of mortality from rodenticide poisoning. Poisoning was significantly more common in male than female fishers and was 7 times more likely than disease to kill males. Based on necropsy findings, suspected causes of mortality based on field evidence alone tended to underestimate the frequency of disease-related mortalities. This study is the first comprehensive investigation of mortality causes of fishers and provides essential information to assist in the conservation of this species

    Fukushima Daiichi-derived radionuclides in the ocean: Transport, fate, and impacts

    Get PDF
    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts

    Necessity of Hippocampal Neurogenesis for the Therapeutic Action of Antidepressants in Adult Nonhuman Primates

    Get PDF
    Rodent studies show that neurogenesis is necessary for mediating the salutary effects of antidepressants. Nonhuman primate (NHP) studies may bridge important rodent findings to the clinical realm since NHP-depression shares significant homology with human depression and kinetics of primate neurogenesis differ from those in rodents. After demonstrating that antidepressants can stimulate neurogenesis in NHPs, our present study examines whether neurogenesis is required for antidepressant efficacy in NHPs. MATERIALS/METHODOLOGY: Adult female bonnets were randomized to three social pens (N = 6 each). Pen-1 subjects were exposed to control-conditions for 15 weeks with half receiving the antidepressant fluoxetine and the rest receiving saline-placebo. Pen-2 subjects were exposed to 15 weeks of separation-stress with half receiving fluoxetine and half receiving placebo. Pen-3 subjects 2 weeks of irradiation (N = 4) or sham-irradiation (N = 2) and then exposed to 15 weeks of stress and fluoxetine. Dependent measures were weekly behavioral observations and postmortem neurogenesis levels.Exposing NHPs to repeated separation stress resulted in depression-like behaviors (anhedonia and subordinance) accompanied by reduced hippocampal neurogenesis. Treatment with fluoxetine stimulated neurogenesis and prevented the emergence of depression-like behaviors. Ablation of neurogenesis with irradiation abolished the therapeutic effects of fluoxetine. Non-stressed controls had normative behaviors although the fluoxetine-treated controls had higher neurogenesis rates. Across all groups, depression-like behaviors were associated with decreased rates of neurogenesis but this inverse correlation was only significant for new neurons in the anterior dentate gyrus that were at the threshold of completing maturation.We provide evidence that induction of neurogenesis is integral to the therapeutic effects of fluoxetine in NHPs. Given the similarity between monkeys and humans, hippocampal neurogenesis likely plays a similar role in the treatment of clinical depression. Future studies will examine several outstanding questions such as whether neuro-suppression is sufficient for producing depression and whether therapeutic neuroplastic effects of fluoxetine are specific to antidepressants

    A comparison of the ellipsoidal and voxelized dosimetric methodologies for internal, heterogeneous radionuclide sources

    No full text
    Non-human biota dosimetry has historically relied on ellipsoidal dosimetric phantoms. In 2008, the International Commission on Radiological Protection (ICRP) presented a set of ellipsoidal models representative of wildlife, including dosimetric data for homogeneously distributed internal radionuclide sources. Such data makes it possible to quickly and easily estimate radiation dose rate. Voxelized modeling, first developed for use in human medical dosimetry, utilizes advanced imaging technologies to generate realistic and detailed dosimetric phantoms. Individual organs or tissues may be segmented and dosimetric data derived for each anatomic area of interest via Monte Carlo modeling. Recently, dosimetric data derived from voxelized models has become available for organisms similar to the ICRP's Reference Animals and Plants in 2008. However, if the existing ellipsoidal models are conservative, there may be little need to employ voxel models in regulatory assessments. At the same time, existing dosimetric techniques may be inadequate to resolve recent controversies surrounding the impact of ionizing radiation exposure on wildlife. This study quantifies the difference between voxel-calculated and ellipsoid-calculated dose rates for seven radionuclides assumed to be heterogeneously distributed: 14C, 36Cl, 60Co, 90Sr, 131I, 134Cs, 137Cs, and 210Po. Generally, the two methodologies agree within a factor of two to three. Finally, this paper compares the assumptions of each dosimetric system, the conditions under which each model best applies, and the implications that our results have for the ongoing dialog surrounding wildlife dosimetry

    Radiological dose rates to marine fish from the Fukushima Daiichi accident: the first three years across the north Pacific

    No full text
    A more complete record is emerging of radionuclide measurements in fish tissue, sediment, and seawater samples from near the Fukushima Daiichi Nuclear Power Plant (FDNPP) and across the Pacific Ocean. Our analysis of publicly available data indicates the dose rates to the most impacted fish species near the FDNPP (median 1.1 mGy d−1, 2012−2014 data) have remained above benchmark levels for potential dose effects at least three years longer than was indicated by previous, data-limited evaluations. Dose rates from 134,137Cs were highest in demersal species with sediment-associated food chains and feeding behaviors. In addition to 134,137Cs, the radionuclide 90Sr was estimated to contribute up to approximately one-half of the total 2013 dose rate to fish near the FDNPP. Mesopelagic fish 100−200 km east of the FDNPP, coastal fish in the Aleutian Islands (3300 km), and trans-Pacific migratory species all had increased dose rates as a consequence of the FDNPP accident, but their total dose rates remained dominated by background radionuclides. A hypothetical human consumer of 50 kg of fish, gathered 3 km from the FDNPP in 2013, would have received a total committed effective dose of approximately 0.95 mSv a−1 from combined FDNPP and ambient radionuclides, of which 0.13 mSv a−1 (14%) was solely from the FDNPP radionuclides and below the 1 mSv a−1 benchmark for public exposure

    Radiological Dose Rates to Marine Fish from the Fukushima Daiichi Accident: The First Three Years Across the North Pacific

    No full text
    A more complete record is emerging of radionuclide measurements in fish tissue, sediment, and seawater samples from near the Fukushima Daiichi Nuclear Power Plant (FDNPP) and across the Pacific Ocean. Our analysis of publicly available data indicates the dose rates to the most impacted fish species near the FDNPP (median 1.1 mGy d−1, 2012−2014 data) have remained above benchmark levels for potential dose effects at least three years longer than was indicated by previous, data-limited evaluations. Dose rates from 134,137Cs were highest in demersal species with sediment-associated food chains and feeding behaviors. In addition to 134,137Cs, the radionuclide 90Sr was estimated to contribute up to approximately one-half of the total 2013 dose rate to fish near the FDNPP. Mesopelagic fish 100−200 km east of the FDNPP, coastal fish in the Aleutian Islands (3300 km), and trans-Pacific migratory species all had increased dose rates as a consequence of the FDNPP accident, but their total dose rates remained dominated by background radionuclides. A hypothetical human consumer of 50 kg of fish, gathered 3 kmfrom the FDNPP in 2013, would have received a total committed effective dose of approximately 0.95 mSv a−1 from combined FDNPP and ambient radionuclides, of which 0.13 mSv a−1 (14%) was solely from the FDNPP radionuclides and below the 1 mSv a−1 benchmark for public exposure
    corecore